A machine learning approach for predicting the Johnson-Champoux-Allard parameters of a fibrous porous material

多孔性 材料科学 计算机科学 复合材料
作者
Wei Yi,Jingwen Guo,Teng Zhou,Hanbo Jiang,Yi Fang
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:220: 109966-109966 被引量:5
标识
DOI:10.1016/j.apacoust.2024.109966
摘要

Porous fibrous materials have been widely used as acoustic treatments for noise attenuation. Their acoustic properties are typically characterized by Johnson-Champoux-Allard (JCA) model, which includes five dominant parameters, i.e., open porosity, flow resistivity, tortuosity, viscous characteristic length, and thermal characteristic length. The JCA parameters depend on the microstructure configuration of the material, which can be attained by experimental measurements or numerically analyzing the flow field inside the microstructure, but significant efforts to predict the parameters are typically required. This study proposes a machine learning approach based on an artificial neural network (ANN) for predicting the JCA parameters of a fibrous material. Two geometric parameters that can characterize the fibrous material, i.e., the radius of the fiber and the equivalent throat size between neighbouring fibers, are set as inputs for the prediction model, while the five JCA parameters are set as outputs. The datasets for the network are prepared from finite element simulations. Results confirm that the trained model can predict the JCA parameters accurately and reliably based on the micro-structural geometric parameters. Finally, the model is further validated by the measured acoustic characteristics of a metal-based fibrous material in an impedance tube. The machine learning model opens up possibilities to facilitate the design of advanced porous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默滑板完成签到,获得积分10
刚刚
JamesPei应助hhhh_xt采纳,获得10
1秒前
哈哈哈发布了新的文献求助10
1秒前
药小博完成签到,获得积分10
1秒前
2秒前
丘比特应助Catherine_Song采纳,获得10
2秒前
单薄静枫发布了新的文献求助10
2秒前
3秒前
3秒前
szh123发布了新的文献求助10
3秒前
4秒前
万能图书馆应助hh采纳,获得10
6秒前
Caixtmx发布了新的文献求助10
6秒前
雪山飞龙发布了新的文献求助10
6秒前
vsoar发布了新的文献求助10
6秒前
zsj发布了新的文献求助30
7秒前
9秒前
orixero应助哈哈哈采纳,获得10
14秒前
15秒前
默默毛豆完成签到,获得积分10
15秒前
17秒前
vsoar完成签到,获得积分10
17秒前
九点必起关注了科研通微信公众号
17秒前
房房不慌完成签到,获得积分10
19秒前
故意的松思应助努力的学采纳,获得20
19秒前
NexusExplorer应助恶恶么v采纳,获得10
19秒前
20秒前
桃子发布了新的文献求助10
20秒前
科研通AI5应助zsj采纳,获得10
21秒前
丹丹完成签到,获得积分20
21秒前
22秒前
卓大有发布了新的文献求助10
22秒前
华仔应助浪费采纳,获得10
24秒前
kk完成签到,获得积分10
27秒前
27秒前
丹丹发布了新的文献求助10
27秒前
27秒前
27秒前
29秒前
冬冬棒完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791285
求助须知:如何正确求助?哪些是违规求助? 3335809
关于积分的说明 10277370
捐赠科研通 3052520
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803125
科研通“疑难数据库(出版商)”最低求助积分说明 761102