STERN: Attention-driven Spatial Transformer Network for abnormality detection in chest X-ray images

计算机科学 人工智能 感兴趣区域 分类器(UML) 模式识别(心理学) 变压器 计算机视觉 机器学习 物理 量子力学 电压
作者
Joana Rocha,Sofia Cardoso Pereira,João Pedrosa,Aurélio Campilho,Ana Maria Mendonça
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:147: 102737-102737
标识
DOI:10.1016/j.artmed.2023.102737
摘要

Chest X-ray scans are frequently requested to detect the presence of abnormalities, due to their low-cost and non-invasive nature. The interpretation of these images can be automated to prioritize more urgent exams through deep learning models, but the presence of image artifacts, e.g. lettering, often generates a harmful bias in the classifiers and an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise, in which an image is either normal or abnormal, using an attention-driven and spatially unsupervised Spatial Transformer Network (STERN), that takes advantage of a novel domain-specific loss to better frame the region of interest. Unlike the state of the art, in which this type of networks is usually employed for image alignment, this work proposes a spatial transformer module that is used specifically for attention, as an alternative to the standard object detection models that typically precede the classifier to crop out the region of interest. In sum, the proposed end-to-end architecture dynamically scales and aligns the input images to maximize the classifier’s performance, by selecting the thorax with translation and non-isotropic scaling transformations, and thus eliminating artifacts. Additionally, this paper provides an extensive and objective analysis of the selected regions of interest, by proposing a set of mathematical evaluation metrics. The results indicate that the STERN achieves similar results to using YOLO-cropped images, with reduced computational cost and without the need for localization labels. More specifically, the system is able to distinguish abnormal frontal images from the CheXpert dataset, with a mean AUC of 85.67% - a 2.55% improvement vs. the 0.98% improvement achieved by the YOLO-based counterpart in comparison to a standard baseline classifier. At the same time, the STERN approach requires less than 2/3 of the training parameters, while increasing the inference time per batch in less than 2 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助易方采纳,获得10
1秒前
迷人冥完成签到 ,获得积分10
1秒前
所所应助czy采纳,获得10
2秒前
卷筒洗衣机完成签到,获得积分10
3秒前
揽月yue应助shuiwuming采纳,获得10
3秒前
周小鱼发布了新的文献求助10
3秒前
奉年完成签到,获得积分10
4秒前
我要发sci应助碧蓝一兰采纳,获得10
4秒前
动漫大师发布了新的文献求助10
4秒前
zjq完成签到,获得积分10
4秒前
Ava应助凌晨采纳,获得10
4秒前
5秒前
一叶给一叶的求助进行了留言
5秒前
费雪卉发布了新的文献求助10
6秒前
DAI完成签到,获得积分10
6秒前
7秒前
传奇3应助miao采纳,获得10
7秒前
木子成发布了新的文献求助10
8秒前
小葵发布了新的文献求助10
8秒前
幽默亦旋完成签到 ,获得积分10
9秒前
彭于晏应助糊涂塌客采纳,获得10
11秒前
秀丽的犀牛完成签到 ,获得积分10
12秒前
Hello应助TT2022采纳,获得10
13秒前
13秒前
善学以致用应助伊酒采纳,获得10
13秒前
14秒前
木子成完成签到,获得积分20
14秒前
深情安青应助三三搞科研采纳,获得50
14秒前
脑洞疼应助九川采纳,获得10
14秒前
桐桐应助程程采纳,获得10
15秒前
易方完成签到,获得积分10
17秒前
非而者厚发布了新的文献求助10
17秒前
叶伟帮完成签到,获得积分10
17秒前
风中的跳跳糖完成签到,获得积分10
18秒前
凌晨发布了新的文献求助10
18秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
非而者厚应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386