Multi-agent reinforcement learning with graph convolutional neural networks for optimal bidding strategies of generation units in electricity markets

投标 计算机科学 强化学习 人工智能 图形 利润(经济学) 一般化 网络拓扑 电力市场 数学优化 机器学习 理论计算机科学 工程类 计算机网络 数学分析 数学 营销 业务 微观经济学 电气工程 经济
作者
Pegah Rokhforoz,Mina Montazeri,Olga Fink
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120010-120010 被引量:10
标识
DOI:10.1016/j.eswa.2023.120010
摘要

Finding optimal bidding strategies for generation units in electricity markets would result in higher profit. However, it is a challenging problem due to the system uncertainty which is due to the lack of knowledge of the strategies of other generation units. Distributed optimization, where each entity or agent decides on its bid individually, has become state of the art. However, it cannot overcome the challenges of system uncertainties. Deep reinforcement learning is a promising approach to learning the optimal strategy in uncertain environments. Nevertheless, it is not able to integrate the information on the spatial system topology into the learning process. This paper proposes a semi-distributed learning algorithm based on deep reinforcement learning (DRL) combined with a graph convolutional neural network (GCN). In fact, the proposed framework helps the generation units to update their decisions by getting feedback from the environment so that they can overcome the challenges of uncertainties. In this proposed algorithm, the state and connection between nodes are the inputs of the GCN, which can make generation units aware of the network structure of the system. This information on the system topology helps the generation units learn to improve their bidding strategies and increase their profit. We evaluate the proposed algorithm on the IEEE 30-bus system under different scenarios. Also, to investigate the generalization ability of the proposed approach, we test the trained model on the IEEE 39-bus system. The results show that the proposed algorithm has a better generalization ability compared to the DRL and can result in a higher profit when changing the topology of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nevermore完成签到,获得积分10
1秒前
2秒前
tt11111发布了新的文献求助10
2秒前
keni发布了新的文献求助10
3秒前
一二三四完成签到,获得积分10
5秒前
Passskd发布了新的文献求助10
5秒前
6秒前
陶醉龙猫发布了新的文献求助10
6秒前
紫电青霜完成签到,获得积分10
6秒前
CipherSage应助单薄的静丹采纳,获得10
6秒前
HH完成签到,获得积分10
8秒前
李健应助别翘二郎腿采纳,获得10
8秒前
10秒前
可爱的苗条关注了科研通微信公众号
10秒前
我是老大应助鱼鱼鱼采纳,获得10
11秒前
11秒前
12秒前
精明外套发布了新的文献求助10
13秒前
飞快的珩发布了新的文献求助10
14秒前
14秒前
搞科研的崔桑完成签到,获得积分10
16秒前
17秒前
17秒前
一一发布了新的文献求助10
18秒前
科研通AI5应助橘子味的风采纳,获得10
20秒前
啵啵洋发布了新的文献求助10
21秒前
21秒前
精明外套完成签到,获得积分10
22秒前
鱼鱼鱼发布了新的文献求助10
23秒前
24秒前
24秒前
亦舒发布了新的文献求助10
25秒前
Sunshine完成签到,获得积分10
25秒前
缥缈的丹翠关注了科研通微信公众号
26秒前
科研通AI5应助大恩区采纳,获得10
26秒前
27秒前
Owen应助WWW采纳,获得10
28秒前
大小宇完成签到,获得积分10
28秒前
28秒前
28秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462