清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FedCS: Communication-Efficient Federated Learning with Compressive Sensing

计算机科学 量化(信号处理) 联合学习 压缩传感 电信线路 集合(抽象数据类型) 方案(数学) 压缩比 人工智能 计算机工程 算法 机器学习 计算机网络 数学 工程类 数学分析 汽车工程 程序设计语言 内燃机
作者
Ye Liu,Shan Chang,Yiqi Liu
标识
DOI:10.1109/icpads56603.2022.00011
摘要

In Federated Learning (FL), two-way model exchanges are required between the server and the workers every training round. Due to the large size of machine learning models, communications between them lead to high training delay and economic cost. At present, communication-efficient FL methods, for examples, top-k sparsification and quantization, taking advantages of the sparseness of model gradients and the fact that gradient-based model updating can tolerance small deviations, effectively reduce the communication cost of single training round. However, these gradient-based communication-efficient schemes cannot be applied to downlink communication. In addition, they cannot be used in conjunction with those communicationfrequency-suppressed methods, e.g., FedAvg, which hinders them from further improving training efficiency. In this paper, we propose FedCS, a compressive sensing based FL method, which can effectively compress and accurately reconstruct non-sparse model (both local and global) parameters (iveights), and can reduce the overall communication cost up to 10 $\times$ as compared to FedAvg without decreasing test accuracy. We introduce 1) a dictionary learning scheme with a quasi-validation set, which helps to project non-sparse parameters onto a sparse domain; 2) ajoint reconstruction scheme, by using which the server recovers global model parameters by executing the reconstruction algorithm only once a round, regardless of the number of compressed local models; 3) a compression ratio adjustment strategy, which balances the trade-off between total communication cost and model accuracy. We perform FedCS on three image classification tasks, and compare it with FedAvg, FedPAQ and T-FedAvg (two improvements of FedAvg). Experimental results demonstrate that FedCS outperforms comparison methods in all tasks, and always maintains a comparable test accuracy to FedAvg, even using a small quasi-validation set and on Non-IId data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助武雨寒采纳,获得10
4秒前
Aurora完成签到 ,获得积分10
4秒前
6秒前
16秒前
阿瑞完成签到 ,获得积分10
17秒前
辛夷完成签到,获得积分10
18秒前
alho完成签到 ,获得积分10
21秒前
任伟超发布了新的文献求助10
22秒前
yang完成签到 ,获得积分10
30秒前
kenchilie完成签到 ,获得积分10
33秒前
相爱就永远在一起完成签到,获得积分10
35秒前
柯伊达完成签到 ,获得积分10
36秒前
38秒前
平凡世界完成签到 ,获得积分10
41秒前
武雨寒发布了新的文献求助10
41秒前
wBw完成签到,获得积分10
47秒前
56秒前
科研雪瑞发布了新的文献求助10
59秒前
科目三应助任伟超采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
cdercder应助科研雪瑞采纳,获得10
1分钟前
如泣草芥完成签到,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
1分钟前
大侠发布了新的文献求助10
1分钟前
像猫的狗完成签到 ,获得积分10
1分钟前
科研雪瑞完成签到,获得积分10
1分钟前
1分钟前
可爱以松完成签到,获得积分10
1分钟前
大侠发布了新的文献求助10
1分钟前
luckygirl完成签到 ,获得积分10
1分钟前
合适的寄灵完成签到 ,获得积分10
1分钟前
tlh完成签到 ,获得积分10
1分钟前
jibenkun完成签到,获得积分10
1分钟前
波波完成签到 ,获得积分10
1分钟前
淡定无施完成签到,获得积分10
1分钟前
1111完成签到 ,获得积分10
2分钟前
大侠发布了新的文献求助10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859