A Deep Learning Control Strategy of IMU-Based Joint Angle Estimation for Hip Power-Assisted Swimming Exoskeleton

人工智能 均方误差 惯性测量装置 计算机科学 卷积神经网络 外骨骼 稳健性(进化) 深度学习 计量单位 人工神经网络 可穿戴计算机 计算机视觉 模拟 数学 嵌入式系统 化学 量子力学 物理 生物化学 基因 统计
作者
Longwen Chen,Xue Yan,Dean Hu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (13): 15058-15070 被引量:19
标识
DOI:10.1109/jsen.2023.3264252
摘要

Wearable exoskeleton techniques are becoming mature and widely used in many areas. However, the biggest challenge lies in that the control system should recognize and follow the wearer's motion correctly and quickly. In this study, we propose a deep learning control strategy using inertial measurement units (IMUs) for hip power-assisted swimming exoskeleton. The control strategy includes two steps: Step 1: the swimming stroke is recognized by a deep convolutional neural and bidirectional long short-term memory network (DCNN-BiLSTM) and Step 2: the hip joint angles are estimated with BiLSTM network belonging to the recognized motion to predict the hip trajectory. The dataset of motion recognition and estimation of four swimming strokes is collected by placing IMUs on swimmers' back and thighs. We conduct offline and online testing of control strategy for accuracy and robustness validation. During offline testing, we achieve an accuracy of more than 96% of motion recognition and root mean square error (RMSE) less than 1.2° of hip joint angle estimation, outperforming 2.76% of accuracy and 0.09° of RMSE compared with those of extreme learning machine (ELM) or conventional neural network and gate recurrent unit (CNN-GRU). During online testing, the pretrained networks are transplanted into a Raspberry Pi 4B and achieve 8.47 ms for conducting one motion recognition and 6.72 ms for one hip joint angle estimation on average, which are far less than 300 ms of delayed sensations between the action of exoskeleton and human, while keeping a satisfying recognition accuracy as well. The experimental results show that the accuracy and robustness of the proposed control strategy are stable and feasible for application to exoskeletons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
充电宝应助h9777采纳,获得10
2秒前
英姑应助火星上香菇采纳,获得10
2秒前
3秒前
小蘑菇应助六只鱼采纳,获得10
3秒前
zzdd应助羊羊羊采纳,获得10
4秒前
Miracle完成签到,获得积分10
4秒前
Hhbbb发布了新的文献求助10
4秒前
kma完成签到,获得积分10
5秒前
隐形曼青应助蕾蕾大酱采纳,获得10
6秒前
香蕉觅云应助江洋大盗采纳,获得10
6秒前
星星完成签到 ,获得积分10
6秒前
ding应助zkc采纳,获得10
6秒前
科研通AI6应助lxdx采纳,获得10
7秒前
善学以致用应助生动的伊采纳,获得10
7秒前
开放明雪发布了新的文献求助10
7秒前
11完成签到,获得积分10
7秒前
科研侠完成签到,获得积分10
8秒前
淡定绮波应助Mr.Cui采纳,获得30
8秒前
JamesPei应助舒适的白开水采纳,获得10
9秒前
mmmmmMM完成签到,获得积分10
9秒前
小迪迦奥特曼完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
科研侠发布了新的文献求助10
12秒前
12秒前
myh完成签到,获得积分10
12秒前
13秒前
李爱国应助纯真的灵珊采纳,获得10
13秒前
hangjias完成签到 ,获得积分10
13秒前
科研通AI6应助ss采纳,获得10
14秒前
14秒前
羊羊羊完成签到,获得积分20
15秒前
小林完成签到,获得积分10
15秒前
15秒前
王干完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532287
求助须知:如何正确求助?哪些是违规求助? 4621035
关于积分的说明 14576445
捐赠科研通 4560926
什么是DOI,文献DOI怎么找? 2498991
邀请新用户注册赠送积分活动 1478963
关于科研通互助平台的介绍 1450218