When Object Detection Meets Knowledge Distillation: A Survey

计算机科学 遗忘 领域(数学) 人工智能 目标检测 机器学习 任务(项目管理) 特征(语言学) 点云 蒸馏 对象(语法) 点(几何) 模式识别(心理学) 系统工程 工程类 几何学 化学 有机化学 纯数学 数学 语言学 哲学
作者
Zhihui Li,Pengfei Xu,Xiaojun Chang,Luyao Yang,Yuanyuan Zhang,Lina Yao,Xiaojiang Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (8): 10555-10579 被引量:81
标识
DOI:10.1109/tpami.2023.3257546
摘要

Object detection (OD) is a crucial computer vision task that has seen the development of many algorithms and models over the years. While the performance of current OD models has improved, they have also become more complex, making them impractical for industry applications due to their large parameter size. To tackle this problem, knowledge distillation (KD) technology was proposed in 2015 for image classification and subsequently extended to other visual tasks due to its ability to transfer knowledge learned by complex teacher models to lightweight student models. This paper presents a comprehensive survey of KD-based OD models developed in recent years, with the aim of providing researchers with an overview of recent progress in the field. We conduct an in-depth analysis of existing works, highlighting their advantages and limitations, and explore future research directions to inspire the design of models for related tasks. We summarize the basic principles of designing KD-based OD models, describe related KD-based OD tasks, including performance improvements for lightweight models, catastrophic forgetting in incremental OD, small object detection, and weakly/semi-supervised OD. We also analyze novel distillation techniques, i.e. different types of distillation loss, feature interaction between teacher and student models, etc. Additionally, we provide an overview of the extended applications of KD-based OD models on specific datasets, such as remote sensing images and 3D point cloud datasets. We compare and analyze the performance of different models on several common datasets and discuss promising directions for solving specific OD problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助Abx采纳,获得10
刚刚
1秒前
ding应助焚天尘殇采纳,获得10
1秒前
1秒前
queer发布了新的文献求助10
1秒前
2秒前
会飞的猪发布了新的文献求助10
2秒前
一指墨完成签到,获得积分10
2秒前
歆琉发布了新的文献求助10
2秒前
小超发布了新的文献求助10
2秒前
3秒前
科研通AI5应助落花生采纳,获得20
3秒前
大气月饼完成签到 ,获得积分10
3秒前
ZYK完成签到,获得积分10
4秒前
4秒前
花卷应助MiaJ采纳,获得10
4秒前
美女完成签到,获得积分10
4秒前
正直的hh发布了新的文献求助10
5秒前
queer发布了新的文献求助10
5秒前
喜悦念柏完成签到,获得积分10
5秒前
科目三应助zz采纳,获得20
5秒前
xiaoguang应助辛勤的平松采纳,获得30
6秒前
塔木完成签到,获得积分10
6秒前
orixero应助闲听花落采纳,获得10
6秒前
queer发布了新的文献求助10
6秒前
queer发布了新的文献求助10
6秒前
Nonono完成签到,获得积分10
6秒前
宝贝发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
英姑应助YangSY采纳,获得10
7秒前
花生辣鱼发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
喜悦念柏发布了新的文献求助10
7秒前
共享精神应助lyx采纳,获得10
7秒前
面包小狗给面包小狗的求助进行了留言
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747924
求助须知:如何正确求助?哪些是违规求助? 4094810
关于积分的说明 12669441
捐赠科研通 3807040
什么是DOI,文献DOI怎么找? 2101645
邀请新用户注册赠送积分活动 1126981
关于科研通互助平台的介绍 1003580