Surface-Roughened Graphene Oxide Microfibers Enhance Electrochemical Reversibility

微电极 石墨烯 材料科学 电极 氧化物 吸附 循环伏安法 纳米技术 电化学 化学工程 分析化学(期刊) 化学 色谱法 物理化学 工程类 冶金 有机化学
作者
Blaise J. Ostertag,Evan J. Porshinsky,Chaminda P. Nawarathne,Ashley E. Ross
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (23): 12124-12136 被引量:1
标识
DOI:10.1021/acs.langmuir.4c01004
摘要

Here, we provide an optimized method for fabricating surface-roughened graphene oxide disk microelectrodes (GFMEs) with enhanced defect density to generate a more suitable electrode surface for dopamine detection with fast-scan cyclic voltammetry (FSCV). FSCV detection, which is often influenced by adsorption-based surface interactions, is commonly impacted by the chemical and geometric structure of the electrode's surface, and graphene oxide is a tunable carbon-based nanomaterial capable of enhancing these two key characteristics. Synthesized GFMEs possess exquisite electronic and mechanical properties. We have optimized an applied inert argon (Ar) plasma treatment to increase defect density, with minimal changes in chemical functionality, for enhanced surface crevices to momentarily trap dopamine during detection. Optimal Ar plasma treatment (100 sccm, 60 s, 100 W) generates crevice depths of 33.4 ± 2.3 nm with high edge plane character enhancing dopamine interfacial interactions. Increases in GFME surface roughness improve electron transfer rates and limit diffusional rates out of the crevices to create nearly reversible dopamine electrochemical redox interactions. The utility of surface-roughened disk GFMEs provides comparable detection sensitivities to traditional cylindrical carbon fiber microelectrodes while improving temporal resolution ten-fold with amplified oxidation current due to dopamine cyclization. Overall, surface-roughened GFMEs enable improved adsorption interactions, momentary trapping, and current amplification, expanding the utility of GO microelectrodes for FSCV detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao双月发布了新的文献求助10
1秒前
1秒前
xiaojingling完成签到,获得积分10
1秒前
小手揣兜发布了新的文献求助10
1秒前
1秒前
时老发布了新的文献求助10
3秒前
迷路颜演完成签到 ,获得积分10
3秒前
Lucas应助znhy采纳,获得10
4秒前
yunyunya完成签到,获得积分20
4秒前
情怀应助云飞扬采纳,获得30
5秒前
子奇发布了新的文献求助10
5秒前
5秒前
香蕉初瑶完成签到,获得积分10
6秒前
anbiii发布了新的文献求助10
6秒前
迷路颜演关注了科研通微信公众号
7秒前
剑指东方是为谁应助苗儿采纳,获得10
7秒前
吴xy发布了新的文献求助10
8秒前
勤奋隶发布了新的文献求助10
9秒前
9秒前
12138完成签到,获得积分10
11秒前
趣多多发布了新的文献求助10
11秒前
英俊的铭应助木木三采纳,获得10
11秒前
12秒前
wanz完成签到,获得积分10
12秒前
12秒前
WaNgBO完成签到,获得积分10
12秒前
13秒前
2jz发布了新的文献求助10
13秒前
13秒前
14秒前
叶叶完成签到,获得积分10
15秒前
小白应助大方的寻雪采纳,获得20
15秒前
17秒前
研友_xnEOX8发布了新的文献求助50
17秒前
wzy发布了新的文献求助10
18秒前
Atlantis发布了新的文献求助10
18秒前
znhy发布了新的文献求助10
19秒前
guoanhong完成签到,获得积分20
19秒前
Ansheng发布了新的文献求助10
19秒前
肖肖发布了新的文献求助10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
微晶石墨深加工及应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833381
求助须知:如何正确求助?哪些是违规求助? 3375725
关于积分的说明 10490498
捐赠科研通 3095373
什么是DOI,文献DOI怎么找? 1704319
邀请新用户注册赠送积分活动 819975
科研通“疑难数据库(出版商)”最低求助积分说明 771697