Assessing the Risk of Heart Attack: A Bayesian Kernel Machine Regression Analysis of Heavy Metal Mixtures

百分位 全国健康与营养检查调查 化学 重金属 医学 环境卫生 环境化学 统计 数学 人口 有机化学
作者
Boubakari Ibrahimou,Kazi Tanvir Hasan,Shelbie Burchfield,Hamisu M. Salihu,Yiliang Zhu,Getachew Dagne,Mario De La Rosa,Assefa M. Melesse,Roberto Lucchini,Zoran Bursac
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-4456611/v1
摘要

Abstract Background: The assessment of heavy metals' effects on human health is frequently limited to investigating one metal or a group of related metals. The effect of heavy metals mixture on heart attack is unknown. Methods: This study applied the Bayesian kernel machine regression model (BKMR) to the 2011-2016 National Health and Nutrition Examination Survey (NHANES) data to investigate the association between heavy metal mixture exposure with heart attack. 2972 participants over the age of 20 were included in the study. Results: Results indicate that heart attack patients have higher levels of cadmium and lead in the blood and cadmium, cobalt, and tin in the urine, while having lower levels of mercury, manganese, and selenium in the blood and manganese, barium, tungsten, and strontium in the urine. The estimated risk of heart attack showed a negative association of 0.0030 units when all the metals were at their 25th percentile compared to their 50th percentile and a positive association of 0.0285 units when all the metals were at their 75th percentile compared to their 50th percentile. The results suggest that heavy metal exposure, especially cadmium and lead, may increase the risk of heart attacks. Conclusions: This study suggests a possible association between heavy metal mixture exposure and heart attack and, additionally, demonstrates how the BKMR model can be used to investigate new combinations of exposures in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Odyssey_Cheung采纳,获得10
1秒前
97_完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Clown发布了新的文献求助10
4秒前
欢喜寄云完成签到,获得积分10
6秒前
Nancy0818完成签到 ,获得积分10
6秒前
帅阳发布了新的文献求助30
7秒前
hbhbj发布了新的文献求助10
7秒前
阿冰发布了新的文献求助10
7秒前
xiaohu完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
豆子完成签到,获得积分10
11秒前
ww发布了新的文献求助10
12秒前
14秒前
dd完成签到,获得积分10
14秒前
15秒前
17秒前
万能图书馆应助陈冲采纳,获得10
18秒前
19秒前
阿冰完成签到,获得积分20
19秒前
19秒前
20秒前
慕念发布了新的文献求助10
20秒前
追寻天寿完成签到,获得积分10
21秒前
22秒前
潦草小狗完成签到 ,获得积分10
22秒前
宇智波完成签到,获得积分10
22秒前
23秒前
情怀应助满意的冰凡采纳,获得10
23秒前
26秒前
27秒前
28秒前
fddd完成签到,获得积分10
30秒前
layla完成签到 ,获得积分10
30秒前
一碗晚月完成签到,获得积分10
31秒前
隐形曼青应助小李呀采纳,获得10
31秒前
天明完成签到,获得积分10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451545
求助须知:如何正确求助?哪些是违规求助? 4559250
关于积分的说明 14273049
捐赠科研通 4483252
什么是DOI,文献DOI怎么找? 2455424
邀请新用户注册赠送积分活动 1446214
关于科研通互助平台的介绍 1422263