亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical Text Datasets for Medical Artificial Intelligence and Large Language Models — A Systematic Review

自然语言处理 人工智能 计算机科学
作者
Jiageng Wu,Xiaocong Liu,Minghui Li,Wanxin Li,Zichang Su,Shixu Lin,Lucas Garay,Zhiyun Zhang,Yujie Zhang,Qingcheng Zeng,Jie Shen,Changzheng Yuan,Jie Yang
标识
DOI:10.1056/aira2400012
摘要

Privacy and ethical considerations limit access to large-scale clinical datasets, particularly clinical text data, which contain extensive and diverse information and serve as the foundation for building clinical large language models (LLMs). The limited accessibility of clinical text data impedes the development of clinical artificial intelligence systems and hampers research participation from resource-poor regions and medical institutions, thereby exacerbating health care disparities. In this review, we conduct a global review to identify publicly available clinical text datasets and elaborate on their accessibility, diversity, and usability for clinical LLMs. We screened 3962 papers across medical (PubMed and MEDLINE) and computational linguistic academic databases (the Association for Computational Linguistics Anthology) as well as 239 tasks from prevalent medical natural language processing (NLP) challenges, such as National NLP Clinical Challenges (n2c2). We identified 192 unique clinical text datasets that claimed to be publicly available. Following an institutional review board–approved data-requesting pipeline, access was granted to fewer than half (91 of 192 [47.4%]) of the identified datasets, with an additional 14 (7.3%) datasets being available for regulated access and 87 (45.3%) datasets remaining inaccessible. The publicly available datasets cover nine languages from 14 countries and over 10 million clinical text records, which mostly (88 [95.7%]) originated from the Americas, Europe, and Asia, with none originating from Oceania or Africa, leaving these regions significantly underrepresented. Distribution differences were also evident within the focused clinical context and supported NLP tasks, with intensive care unit (18 [16.8%]), respiratory disease (13 [12.1%]), and cardiovascular disease (11 [10.3%]) gaining significant attention. Named entity recognition (23 [21.7%]), text classification (22 [20.8%]), and event extraction (12 [11.3%]) were the most explored NLP tasks on clinical text datasets. To our knowledge, this is the first systematic review to characterize publicly available clinical text datasets, the foundation of clinical LLMs, highlighting the difficulty in accessibility, underrepresentation across regions and languages, and the challenges posed by the LLMs. Sharing diversified and large-scale clinical text data is necessary, with protection to promote health care research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
www完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Nature完成签到,获得积分10
3秒前
哈基米德应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
wackykao完成签到 ,获得积分10
4秒前
likediandian关注了科研通微信公众号
6秒前
8秒前
10秒前
17秒前
揽月yue完成签到,获得积分10
18秒前
爆米花应助吃死你啦啦采纳,获得10
19秒前
周媛媛完成签到,获得积分10
21秒前
23秒前
牛八先生完成签到,获得积分10
25秒前
likediandian发布了新的文献求助10
27秒前
龙龙冲发布了新的文献求助10
28秒前
甜甜纸飞机完成签到 ,获得积分10
28秒前
29秒前
凉白开发布了新的文献求助10
30秒前
31秒前
小樱颖子完成签到 ,获得积分10
35秒前
科研鼠发布了新的文献求助10
37秒前
LHH完成签到 ,获得积分10
37秒前
38秒前
龙龙冲完成签到,获得积分20
39秒前
pka发布了新的文献求助10
42秒前
43秒前
msn00完成签到 ,获得积分10
46秒前
NaNA发布了新的文献求助10
48秒前
pka完成签到,获得积分10
48秒前
Yoo完成签到 ,获得积分10
49秒前
万能图书馆应助11采纳,获得10
50秒前
配言完成签到 ,获得积分10
51秒前
甜甜的紫菜完成签到 ,获得积分10
51秒前
Yuang完成签到 ,获得积分10
51秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519