Clinical Text Datasets for Medical Artificial Intelligence and Large Language Models — A Systematic Review

自然语言处理 人工智能 计算机科学
作者
Jiageng Wu,Xiaocong Liu,Minghui Li,Wanxin Li,Zichang Su,Shixu Lin,Lucas Garay,Zhiyun Zhang,Yujie Zhang,Qingcheng Zeng,Jie Shen,Changzheng Yuan,Jie Yang
标识
DOI:10.1056/aira2400012
摘要

Privacy and ethical considerations limit access to large-scale clinical datasets, particularly clinical text data, which contain extensive and diverse information and serve as the foundation for building clinical large language models (LLMs). The limited accessibility of clinical text data impedes the development of clinical artificial intelligence systems and hampers research participation from resource-poor regions and medical institutions, thereby exacerbating health care disparities. In this review, we conduct a global review to identify publicly available clinical text datasets and elaborate on their accessibility, diversity, and usability for clinical LLMs. We screened 3962 papers across medical (PubMed and MEDLINE) and computational linguistic academic databases (the Association for Computational Linguistics Anthology) as well as 239 tasks from prevalent medical natural language processing (NLP) challenges, such as National NLP Clinical Challenges (n2c2). We identified 192 unique clinical text datasets that claimed to be publicly available. Following an institutional review board–approved data-requesting pipeline, access was granted to fewer than half (91 of 192 [47.4%]) of the identified datasets, with an additional 14 (7.3%) datasets being available for regulated access and 87 (45.3%) datasets remaining inaccessible. The publicly available datasets cover nine languages from 14 countries and over 10 million clinical text records, which mostly (88 [95.7%]) originated from the Americas, Europe, and Asia, with none originating from Oceania or Africa, leaving these regions significantly underrepresented. Distribution differences were also evident within the focused clinical context and supported NLP tasks, with intensive care unit (18 [16.8%]), respiratory disease (13 [12.1%]), and cardiovascular disease (11 [10.3%]) gaining significant attention. Named entity recognition (23 [21.7%]), text classification (22 [20.8%]), and event extraction (12 [11.3%]) were the most explored NLP tasks on clinical text datasets. To our knowledge, this is the first systematic review to characterize publicly available clinical text datasets, the foundation of clinical LLMs, highlighting the difficulty in accessibility, underrepresentation across regions and languages, and the challenges posed by the LLMs. Sharing diversified and large-scale clinical text data is necessary, with protection to promote health care research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111应助目眩采纳,获得20
2秒前
lhn完成签到,获得积分10
4秒前
5秒前
5秒前
令狐冲发布了新的文献求助50
6秒前
9秒前
cdercder应助kdjm688采纳,获得10
10秒前
ShiRz发布了新的文献求助10
10秒前
芳芳发布了新的文献求助10
10秒前
小蘑菇应助震动的香旋采纳,获得30
14秒前
Fangfang发布了新的文献求助10
15秒前
16秒前
雨落瑾年完成签到 ,获得积分10
16秒前
俏皮的从阳完成签到 ,获得积分10
19秒前
张小度ever完成签到 ,获得积分10
19秒前
目眩完成签到,获得积分10
20秒前
bing完成签到,获得积分10
21秒前
小墨鱼完成签到,获得积分10
21秒前
wayne完成签到 ,获得积分10
22秒前
靓丽访枫完成签到 ,获得积分10
23秒前
青山无思完成签到,获得积分10
24秒前
frap完成签到,获得积分0
28秒前
7z完成签到,获得积分10
29秒前
热情积极完成签到,获得积分10
29秒前
cdercder应助kdjm688采纳,获得10
34秒前
34秒前
Juvenilesy完成签到 ,获得积分10
38秒前
平淡紫夏完成签到,获得积分10
38秒前
溫蒂应助123采纳,获得10
39秒前
39秒前
阳光怀亦发布了新的文献求助50
41秒前
完美世界应助moon采纳,获得10
42秒前
机智采枫完成签到 ,获得积分10
43秒前
平淡紫夏发布了新的文献求助10
44秒前
无限柠檬4519完成签到,获得积分10
48秒前
超级蘑菇完成签到 ,获得积分10
49秒前
49秒前
CodeCraft应助勤奋的世德采纳,获得10
50秒前
华仔应助学业顺利采纳,获得10
50秒前
青山无思发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777877
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214219
捐赠科研通 3038610
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304