GRACE: Unveiling Gene Regulatory Networks With Causal Mechanistic Graph Neural Networks in Single-Cell RNA-Sequencing Data

因果推理 推论 计算生物学 基因 基因调控网络 因果模型 生物 遗传学 人工神经网络 机器学习 自编码 计算机科学 人工智能 基因表达 数学 计量经济学 统计
作者
Jiacheng Wang,Yaojia Chen,Quan Zou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2024.3412753
摘要

Reconstructing gene regulatory networks (GRNs) using single-cell RNA sequencing (scRNA-seq) data holds great promise for unraveling cellular fate development and heterogeneity. While numerous machine-learning methods have been proposed to infer GRNs from scRNA-seq gene expression data, many of them operate solely in a statistical or black box manner, limiting their capacity for making causal inferences between genes. In this study, we introduce GRN inference with Accuracy and Causal Explanation (GRACE), a novel graph-based causal autoencoder framework that combines a structural causal model (SCM) with graph neural networks (GNNs) to enable GRN inference and gene causal reasoning from scRNA-seq data. By explicitly modeling causal relationships between genes, GRACE facilitates the learning of regulatory context and gene embeddings. With the learned gene signals, our model successfully decoding the causal structures and alleviates the accurate determination of multiple attributes of gene regulation that is important to determine the regulatory levels. Through extensive evaluations on seven benchmarks, we demonstrate that GRACE outperforms 14 state-of-the-art GRN inference methods, with the incorporation of causal mechanisms significantly enhancing the accuracy of GRN and gene causality inference. Furthermore, the application to human peripheral blood mononuclear cell (PBMC) samples reveals cell type-specific regulators in monocyte phagocytosis and immune regulation, validated through network analysis and functional enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liuxl发布了新的文献求助10
2秒前
ergatoid完成签到,获得积分10
2秒前
留胡子的函完成签到,获得积分10
3秒前
煎饼狗子发布了新的文献求助10
4秒前
5秒前
6秒前
小乔发布了新的文献求助10
6秒前
7秒前
7秒前
NexusExplorer应助幸福大白采纳,获得10
7秒前
Owen应助幸福大白采纳,获得10
7秒前
ohno耶耶耶完成签到,获得积分10
8秒前
9秒前
花陵发布了新的文献求助10
10秒前
liuxl完成签到,获得积分10
11秒前
wslzl完成签到,获得积分10
11秒前
ANGHUI发布了新的文献求助10
11秒前
zahngyacheng发布了新的文献求助10
12秒前
13秒前
14秒前
大模型应助陈建采纳,获得10
14秒前
yuanbin-lu完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
sun关闭了sun文献求助
16秒前
落水者完成签到,获得积分10
16秒前
充电宝应助ppp采纳,获得10
17秒前
混子发布了新的文献求助10
19秒前
莴苣发布了新的文献求助10
19秒前
外向太阳完成签到,获得积分10
19秒前
ANGHUI完成签到,获得积分10
23秒前
田様应助混子采纳,获得10
25秒前
海绵宝宝完成签到,获得积分10
26秒前
27秒前
丘比特应助Olivia采纳,获得50
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285223
求助须知:如何正确求助?哪些是违规求助? 3812672
关于积分的说明 11942875
捐赠科研通 3459006
什么是DOI,文献DOI怎么找? 1897156
邀请新用户注册赠送积分活动 945701
科研通“疑难数据库(出版商)”最低求助积分说明 849410