Regulating anionic redox reversibility in Li-rich layered cathodes via diffusion-induced entropy-assisted surface engineering

材料科学 氧化还原 阴极 扩散 化学工程 表面工程 化学物理 纳米技术 物理化学 热力学 冶金 化学 物理 工程类
作者
Jiayu Zhao,Yuefeng Su,Jinyang Dong,Qi Shi,Yun Lu,Ning Li,Haoyu Wang,Youyou Fang,Wenbo Li,Jianan Hao,Yujia Wu,Qiongqiong Qi,Feng Wu,Lai Chen
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:70: 103550-103550 被引量:14
标识
DOI:10.1016/j.ensm.2024.103550
摘要

Cobalt-free lithium- and manganese-rich layered oxides (LMROs) are regarded as effective cathode materials for lithium storage due to their high capacity and cost-effectiveness. However, challenges with structural degradation, resulting in poor cyclability and rate performance, have hindered their widespread use. Essentially, rapid structural degradation arises from irreversible and complex redox reactions, triggering oxygen release, transition metal migration, and electrolyte decomposition. To tackle this issue, we propose an epitaxial entropy-assisted construction approach to develop a sturdy surface with adaptable composition, stabilising the surface crystal structure and preventing undesirable interface reactions. This distinct reconstructed surface comprises diverse heterogeneous elements and composite microstructures. The heteroatom-doped layer, with multi-doping sites like Li, O site, and tetrahedral positions, effectively manages the chemical environment and electronic structure of surface lattice oxygen. This epitaxial entropy stabilisation approach, stemming from multi-element synergy, effectively controls redox progress to limit oxygen release and curb transition metal migration, reducing structural decay. Additionally, the composite coated layer, containing oxygen defects and heterogeneous spinel phases, can hinder electrolyte corrosion and promote Li+ transport. Using these epitaxial entropy surface modifications, the LMRO cathode demonstrates regulated anionic redox reversibility and enhanced cycling stability across diverse operational conditions. This epitaxial entropy-assisted surface engineering offers a promising avenue for stabilising high-energy cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
njusdf发布了新的文献求助30
刚刚
刚刚
迷路毛豆完成签到,获得积分10
刚刚
1秒前
啊啊啊啊啊啊啊完成签到,获得积分10
1秒前
1秒前
小蘑菇应助佳丽采纳,获得10
1秒前
向东风发布了新的文献求助10
2秒前
情怀应助小黄油采纳,获得10
2秒前
leena发布了新的文献求助10
2秒前
3秒前
沉默的婴发布了新的文献求助10
3秒前
3秒前
聪明花生发布了新的文献求助10
4秒前
是赵先森呀完成签到,获得积分10
4秒前
vivi完成签到,获得积分10
5秒前
迷路毛豆发布了新的文献求助30
5秒前
巫堵完成签到,获得积分10
5秒前
隐形千愁完成签到,获得积分10
5秒前
天天快乐应助Zkxxxx采纳,获得10
6秒前
6秒前
7秒前
8秒前
Isaac发布了新的文献求助30
8秒前
8秒前
8秒前
隐形千愁发布了新的文献求助10
8秒前
9秒前
qi完成签到,获得积分10
10秒前
万灵竹完成签到 ,获得积分10
11秒前
bao发布了新的文献求助30
12秒前
蔚欢发布了新的文献求助10
12秒前
weiliaier完成签到,获得积分10
13秒前
小黄油发布了新的文献求助10
13秒前
Donger完成签到 ,获得积分10
13秒前
15秒前
华仔应助和谐小霸王采纳,获得10
15秒前
大力的契完成签到,获得积分10
15秒前
dola完成签到,获得积分10
15秒前
虚幻平露完成签到,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Overcoming Synthetic Challenges in Medicinal Chemistry Mechanistic Insights and Solutions 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075905
求助须知:如何正确求助?哪些是违规求助? 3614914
关于积分的说明 11473583
捐赠科研通 3332815
什么是DOI,文献DOI怎么找? 1831887
邀请新用户注册赠送积分活动 901684
科研通“疑难数据库(出版商)”最低求助积分说明 820505