Identification and Characterization of Immune Checkpoint Inhibitor–Induced Toxicities From Electronic Health Records Using Natural Language Processing

中止 医学 不利影响 肺炎 诊断代码 因果关系(物理学) 队列 人口 内科学 重症监护医学 物理 环境卫生 量子力学
作者
Hannah Barman,Sriram Venkateswaran,Antonio Santo,Unice Yoo,Eli Silvert,Krishna Rao,Bharathwaj Raghunathan,Lisa A. Kottschade,Matthew S. Block,G Scott Chandler,Joshua Zalis,Tyler E. Wagner,Rajat Mohindra
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:4
标识
DOI:10.1200/cci.23.00151
摘要

PURPOSE Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, yet their use is associated with immune-related adverse events (irAEs). Estimating the prevalence and patient impact of these irAEs in the real-world data setting is critical for characterizing the benefit/risk profile of ICI therapies beyond the clinical trial population. Diagnosis codes, such as International Classification of Diseases codes, do not comprehensively illustrate a patient's care journey and offer no insight into drug-irAE causality. This study aims to capture the relationship between ICIs and irAEs more accurately by using augmented curation (AC), a natural language processing–based innovation, on unstructured data in electronic health records. METHODS In a cohort of 9,290 patients treated with ICIs at Mayo Clinic from 2005 to 2021, we compared the prevalence of irAEs using diagnosis codes and AC models, which classify drug-irAE pairs in clinical notes with implied textual causality. Four illustrative irAEs with high patient impact—myocarditis, encephalitis, pneumonitis, and severe cutaneous adverse reactions, abbreviated as MEPS—were analyzed using corticosteroid administration and ICI discontinuation as proxies of severity. RESULTS For MEPS, only 70% (n = 118) of patients found by AC were also identified by diagnosis codes. Using AC models, patients with MEPS received corticosteroids for their respective irAE 82% of the time and permanently discontinued the ICI because of the irAE 35.9% (n = 115) of the time. CONCLUSION Overall, AC models enabled more accurate identification and assessment of patient impact of ICI-induced irAEs not found using diagnosis codes, demonstrating a novel and more efficient strategy to assess real-world clinical outcomes in patients treated with ICIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jaylou完成签到,获得积分10
4秒前
4秒前
豆浆油条完成签到 ,获得积分10
5秒前
6秒前
研友_8WO978发布了新的文献求助10
9秒前
xiaofeiyan完成签到 ,获得积分10
10秒前
黄雪峰发布了新的文献求助10
11秒前
孙刚完成签到 ,获得积分10
12秒前
点凌蝶完成签到,获得积分10
14秒前
Freya完成签到 ,获得积分10
14秒前
威武鞅完成签到,获得积分10
14秒前
1111完成签到 ,获得积分10
14秒前
张一完成签到,获得积分10
15秒前
xiaoming完成签到 ,获得积分10
17秒前
Joy完成签到,获得积分10
17秒前
旅梦完成签到 ,获得积分10
18秒前
19秒前
violetlishu完成签到 ,获得积分10
21秒前
ricown完成签到,获得积分10
21秒前
23秒前
烟花应助研友_8WO978采纳,获得10
24秒前
whisper完成签到 ,获得积分10
24秒前
汉堡包应助科研通管家采纳,获得10
25秒前
老迟到的羊完成签到 ,获得积分10
27秒前
小事完成签到 ,获得积分10
35秒前
勤奋凡之完成签到 ,获得积分10
35秒前
star完成签到,获得积分10
36秒前
君看一叶舟完成签到 ,获得积分10
37秒前
Zz完成签到 ,获得积分10
38秒前
hhllhh完成签到,获得积分10
47秒前
LinYX完成签到,获得积分10
49秒前
张小小完成签到,获得积分10
53秒前
ahh完成签到 ,获得积分10
55秒前
Erin完成签到 ,获得积分0
55秒前
西红柿不吃皮完成签到 ,获得积分10
57秒前
清爽的柚子完成签到 ,获得积分10
58秒前
琉璃岁月完成签到,获得积分10
59秒前
1分钟前
1分钟前
研友_8WO978发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784858
求助须知:如何正确求助?哪些是违规求助? 3330118
关于积分的说明 10244374
捐赠科研通 3045503
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759557