An online chatter detection and recognition method for camshaft non-circular contour high-speed grinding based on improved LMD and GAPSO-ABC-SVM

凸轮轴 支持向量机 模式识别(心理学) 人工智能 汽车工程 研磨 计算机科学 工程类 语音识别 机械工程
作者
Rongjin Zhuo,Zhaohui Deng,Yiwen Li,Tao Liu,Jimin Ge,Lishu Lv,Wei Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:216: 111487-111487 被引量:8
标识
DOI:10.1016/j.ymssp.2024.111487
摘要

The camshaft is a crucial part of the engine. However, its non-circular contour surface is prone to chatter in high-speed grinding, seriously affecting the processing quality and efficiency. Therefore, an online detection and recognition method for camshaft non-circular contour high-speed grinding chatter based on improved LMD and GAPSO-ABC-SVM is proposed. Firstly, the local mean decomposition (LMD) algorithm is improved by the mirror extension method, moving average algorithm, and adaptive soft screening stopping criterion. Its ability to deal with unsteady vibration signals is verified by simulation signals and experiments. Then, considering the influence of the curvature change of the non-circular contour grinding surface on the chatter features, the signal features are automatically extracted according to the contour curve characteristics. Finally, a recognition algorithm based on GAPSO-ABC-SVM is proposed to improve the accuracy and robustness of high-speed grinding chatter recognition. A new hybrid swarm intelligent optimization algorithm is proposed through the intelligent fusion of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) algorithms. The support vector machine (SVM) optimization is implemented by the hybrid swarm intelligence algorithm. In the high-speed grinding chatter verification experiment of camshaft non-circular contour, the detection and recognition method based on improved LMD and GAPSO-ABC-SVM can achieve an accuracy of 97.917 % for chatter recognition. And it has good fault tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lss完成签到,获得积分10
3秒前
大个应助明亮无颜采纳,获得30
6秒前
去有风的地方关注了科研通微信公众号
6秒前
燕子完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
哆啦A梦完成签到,获得积分10
10秒前
晓晓晓发布了新的文献求助10
11秒前
朱大头发布了新的文献求助10
13秒前
15秒前
田様应助cdercder采纳,获得10
15秒前
无情的函发布了新的文献求助10
15秒前
666完成签到,获得积分10
16秒前
大陆完成签到,获得积分10
17秒前
huangshuishui关注了科研通微信公众号
17秒前
19秒前
科研通AI5应助Jonathan采纳,获得30
20秒前
美满的天薇完成签到,获得积分20
21秒前
monster发布了新的文献求助10
22秒前
心灵美千秋完成签到 ,获得积分10
23秒前
xx发布了新的文献求助10
24秒前
25秒前
懒123完成签到,获得积分10
26秒前
Ava应助monster采纳,获得10
27秒前
27秒前
Lazarus完成签到,获得积分10
28秒前
晓晓晓完成签到,获得积分10
30秒前
31秒前
学术神经发布了新的文献求助10
31秒前
32秒前
一只菜鸡发布了新的文献求助10
32秒前
倪瑞恒完成签到,获得积分10
33秒前
科研通AI5应助靓丽的发箍采纳,获得10
34秒前
Zarc完成签到,获得积分10
35秒前
huangshuishui发布了新的文献求助10
36秒前
权千万发布了新的文献求助10
36秒前
伶俐的高烽完成签到 ,获得积分10
37秒前
鹿鹿发布了新的文献求助10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979