FIND: a forward–inverse navigation and discovery platform for hydrogen storage alloys powered by data-driven machine learning

计算机科学 反向 数据科学 人工智能 数学 几何学
作者
Xiaobo Lu,Shiwen Luo,Jin Li,Minjie Chen,Tingting Yao,Zhuoran Xu,Yujie Yan,Jun Li,Xuqiang Shao,Zhijun Gao,Weijie Yang
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
卷期号:5 (4)
标识
DOI:10.20517/jmi.2025.56
摘要

High-performance solid-state hydrogen storage alloys are among the key factors enabling the widespread application of hydrogen energy. However, current materials still face challenges such as limited hydrogen storage capacity and excessive thermodynamic stability, which urgently need to be addressed. In this work, we constructed a large-scale solid-state hydride database, encompassing over 1,000 alloy systems and more than 6,000 valid data records. By integrating alloying strategies with machine learning (ML) techniques, the Magpie tool was utilized for feature generation, and a multi-objective regression model was developed to simultaneously predict absorption/desorption plateau pressure, enthalpy change, entropy change, and maximum hydrogen storage capacity using various ML algorithms. Furthermore, we achieved the inverse design of solid-state hydrogen storage materials using a variational autoencoder. By integrating the forward prediction and inverse design models, we developed a forward–inverse navigation and discovery platform for hydrogen storage alloys powered by data-driven ML: FIND. The forward module enables rapid prediction of absorption and desorption properties based on alloy composition and testing temperature. Building upon this, an advanced function allows fast prediction for multicomponent systems with flexible molar ratios. Subsequently, the inverse module facilitates the screening of potential alloy candidates based on user-defined target properties. Finally, the predictive models were integrated with a genetic algorithm to optimize alloy compositions within the Mg–Ni–La–Ce and Mg–Ni–La systems. Multiple novel high-performance alloy candidates were identified, providing a powerful tool and methodological foundation for high-throughput screening and intelligent development of hydrogen storage materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
期待未来的自己应助PAPA采纳,获得10
刚刚
柴六斤完成签到,获得积分10
1秒前
Alien发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
qiuling发布了新的文献求助30
3秒前
3秒前
自觉绿柏发布了新的文献求助10
3秒前
3秒前
慕青应助莉莉采纳,获得10
3秒前
大老黑发布了新的文献求助10
4秒前
陈豆豆完成签到,获得积分10
4秒前
五山第一院士完成签到,获得积分10
4秒前
5秒前
5秒前
马越关注了科研通微信公众号
7秒前
搜集达人应助欧阳铭采纳,获得10
7秒前
7秒前
Eva发布了新的文献求助10
8秒前
8秒前
8秒前
SevenKing发布了新的文献求助10
8秒前
nini发布了新的文献求助30
8秒前
9秒前
共享精神应助甜甜采纳,获得10
10秒前
健身的吮指原味鸡完成签到,获得积分10
10秒前
阿峰发布了新的文献求助10
10秒前
YUHUIFAN完成签到,获得积分10
10秒前
复杂的忆灵完成签到,获得积分20
10秒前
11秒前
彩色紫南完成签到,获得积分20
11秒前
栗浩朋完成签到,获得积分10
12秒前
自觉绿柏完成签到,获得积分10
12秒前
12秒前
13秒前
guo发布了新的文献求助10
13秒前
自觉的向日葵完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
《2024-2029年中国减肥产品行业市场分析及发展前景预测报告》 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4506617
求助须知:如何正确求助?哪些是违规求助? 3954488
关于积分的说明 12259485
捐赠科研通 3614618
什么是DOI,文献DOI怎么找? 1988710
邀请新用户注册赠送积分活动 1024772
科研通“疑难数据库(出版商)”最低求助积分说明 916795