氢氧化物
电解
离子交换
离子
可扩展性
材料科学
膜
层状双氢氧化物
化学工程
化学
计算机科学
无机化学
电极
生物化学
有机化学
工程类
物理化学
电解质
数据库
作者
Álvaro Seijas‐Da Silva,Adrian Hartert,Víctor Oestreicher,Jorge Romero,Camilo Jaramillo‐Hernández,Luuk J.J. Muris,Grégoire Thorez,Bruno J. C. Vieira,Guillaume Ducourthial,Alice Fiocco,Sébastien Legendre,Cristián Huck‐Iriart,Martín Mizrahi,Diego López‐Alcalá,Anna T.S. Freiberg,Karl J. J. Mayrhofer,João C. Waerenborgh,José J. Baldoví,Serhiy Cherevko,M. Varela
标识
DOI:10.1038/s41467-025-61356-2
摘要
The alkaline oxygen evolution reaction is a key step in producing green hydrogen through water electrolysis, but its large-scale industrial application remains limited due to challenges with current electrocatalysts-particularly in terms of scalability, efficiency, and long-term stability. Here we show an industrially scalable synthesis of an active NiFe layered double hydroxide (NiFe-LDH) catalyst using a room-temperature, atmospheric-pressure route. The process involves homogeneous alkalinization, where chloride ions nucleophilically attack an epoxide ring, producing a low-dimensional, defect-rich NiFe-LDH with pronounced iron clustering. In-situ spectroscopy and ab-initio calculations reveal that these structural features maximize the conversion of the NiFe-LDH to the catalytic active phase and minimize the energy barrier, improving catalytic efficiency. When used as the anode in an anion exchange membrane water electrolyzer operating at 70 °C, our material delivers 1 A cm⁻² at 1.69 V in a 5 cm2 full-cell setup, with notable durability compared to conventional NiFe-LDHs. This scalable approach could considerably lower the cost of green hydrogen production by enabling more efficient alkaline electrolyzers.
科研通智能强力驱动
Strongly Powered by AbleSci AI