氢氧化物
电解
离子交换
离子
可扩展性
材料科学
膜
层状双氢氧化物
化学工程
化学
计算机科学
无机化学
电极
生物化学
有机化学
工程类
物理化学
电解质
数据库
作者
Álvaro Seijas‐Da Silva,Adrian Hartert,Víctor Oestreicher,Jorge Romero,Camilo Jaramillo‐Hernández,Luuk J J Muris,Grégoire Thorez,Bruno J. C. Vieira,Guillaume Ducourthial,Alice Fiocco,Sébastien Legendre,Cristián Huck‐Iriart,Martín Mizrahi,Diego López-Alcalá,Anna T.S. Freiberg,Karl J. J. Mayrhofer,João C. Waerenborgh,José J. Baldoví,Serhiy Cherevko,M. Varela
标识
DOI:10.1038/s41467-025-61356-2
摘要
The alkaline oxygen evolution reaction is a key step in producing green hydrogen through water electrolysis, but its large-scale industrial application remains limited due to challenges with current electrocatalysts-particularly in terms of scalability, efficiency, and long-term stability. Here we show an industrially scalable synthesis of an active NiFe layered double hydroxide (NiFe-LDH) catalyst using a room-temperature, atmospheric-pressure route. The process involves homogeneous alkalinization, where chloride ions nucleophilically attack an epoxide ring, producing a low-dimensional, defect-rich NiFe-LDH with pronounced iron clustering. In-situ spectroscopy and ab-initio calculations reveal that these structural features maximize the conversion of the NiFe-LDH to the catalytic active phase and minimize the energy barrier, improving catalytic efficiency. When used as the anode in an anion exchange membrane water electrolyzer operating at 70 °C, our material delivers 1 A cm⁻² at 1.69 V in a 5 cm2 full-cell setup, with notable durability compared to conventional NiFe-LDHs. This scalable approach could considerably lower the cost of green hydrogen production by enabling more efficient alkaline electrolyzers.
科研通智能强力驱动
Strongly Powered by AbleSci AI