An Integrated Rigid-Flexible Body Dynamic Approach to Computationally Efficient Musculoskeletal Modeling and Muscle Recruitment Simulation of the Lumbosacral Spine and Torso

人体躯干 腰骶关节 计算机科学 生物力学 模拟 物理医学与康复 解剖 医学
作者
Siril Teja Dukkipati,Mark Driscoll
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tbme.2025.3617301
摘要

In silico biomechanical models of the spine traditionally follow either rigid body dynamic (RBD) modeling (multibody modeling) or finite element (FE) modeling techniques. While RBD models lack robust representation for flexible tissues, FE models are computationally expensive. This study proposes an integrated rigid-flexible body dynamic (RFBD) architecture to address these limitations, and develops a full-torso human model, focusing spinal mechanical stability. The model consisted of L1-L5 lumbar vertebrae, pelvis, sacrum, a lumped thoracic spine with ribcage as rigid bodies, while the intervertebral discs (IVDs), abdominal cavity and thoracolumbar fascia (TLF) were modeled as deformable reduced-order flexible bodies. Spinal ligaments were represented as nonlinear tension-only springs, while the musculature was modeled as tension-only forces. Level-by-level spinal stiffness was validated under pure flexion moments up to 7.5 Nm against literature studies. The reduced-order implementation was also validated against an identical FE model. Spinal stability contribution of different tissues in flexion was systematically evaluated using six on-off cases. Passive spine segmental stiffness profiles matched well with ex vivo and in silico comparators. The RFBD method demonstrated strong agreement with the FE solver, while significantly reducing computational demand. Stability analyses highlighted the role of intra-abdominal pressure in spinal unloading and generation of compressive loads along the spinal curvature through muscle recruitment. This parametric, fast-solving, high-fidelity spine simulation platform could be a useful biomechanical tool for spine researchers. A novel human torso model with integrated rigid and flexible bodies was presented in this study, providing insights into mechanical spine stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wf完成签到,获得积分10
1秒前
科研通AI6应助Hey采纳,获得10
1秒前
1秒前
是阮软不是懒懒完成签到 ,获得积分10
1秒前
2秒前
2秒前
Claire完成签到,获得积分10
2秒前
3秒前
Ava应助不要重名采纳,获得10
3秒前
凯瑞发布了新的文献求助10
5秒前
陈少华发布了新的文献求助10
6秒前
haha111完成签到,获得积分10
7秒前
吴若雨完成签到 ,获得积分10
8秒前
9秒前
9秒前
包远锋发布了新的文献求助10
9秒前
zwl完成签到,获得积分10
10秒前
SciGPT应助xiaobai123456采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
华仔应助牧笛采纳,获得10
11秒前
linxc07发布了新的文献求助10
13秒前
zpz发布了新的文献求助10
13秒前
13秒前
桐桐应助djx123采纳,获得10
13秒前
hdisyd完成签到 ,获得积分10
13秒前
14秒前
15秒前
harrycare完成签到,获得积分10
15秒前
Seathern完成签到,获得积分10
16秒前
科研通AI2S应助COCO采纳,获得10
16秒前
ys1111xiao完成签到 ,获得积分10
17秒前
英俊的铭应助淡然的镜子采纳,获得10
17秒前
Jaxine完成签到 ,获得积分10
17秒前
全缘郡完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
Pernik发布了新的文献求助10
20秒前
21秒前
倒霉的芒果完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600339
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841190
捐赠科研通 4676319
什么是DOI,文献DOI怎么找? 2538694
邀请新用户注册赠送积分活动 1505750
关于科研通互助平台的介绍 1471186