Hypergraph-Based High-Order Correlation Analysis for Large-Scale Long-Tailed Data Classification

超图 计算机科学 比例(比率) 人工智能 模式识别(心理学) 相关性 数据挖掘 数学 地图学 组合数学 地理 几何学
作者
Xiangmin Han,Yubo Zhang,Shihui Ying,Yue Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:48 (1): 270-282
标识
DOI:10.1109/tpami.2025.3603631
摘要

High-order correlations, which capture complex interactions among multiple entities, extend beyond traditional graph representations and support a wider range of applications. However, existing neural network models for high-order correlations encounter scalability issues on large datasets due to the substantial computational complexity involved in processing large-scale structures. In addition, long-tailed distributions, which are common in real-world data, result in underrepresented categories and hinder the model's ability to learn effective high-order interaction patterns for rare instances. To address these issues, we introduce a novel framework known as HyperGraph-based High-order Correlation analysis (HGHC) for large-scale long-tailed data classification. Firstly, to tackle the long-tailed distribution problem, HGHC generates synthetic vertices and computes their attributed high-order correlations using an oversampling module inspired by SMOTE, termed HSMOTE, to enhance the representation of tail categories. Secondly, for efficient computational scaling, we treat the data as having two modalities: the structural modality capturing high-order relationships and the feature modality representing individual attributes. We perform computations on both CPU and GPU separately and then fuse the results to achieve a lightweight vertex transformation and aggregation scheme for high-order correlation data. Additionally, we contribute the first benchmark for large-scale long-tailed datasets involving high-order correlations, known as Amazon-LT, which includes multiple datasets with varying imbalance ratios. Our experimental results demonstrate that HGHC achieves state-of-the-art performance in handling high-order correlation analysis issues for large-scale, long-tailed data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱格儿发布了新的文献求助10
刚刚
传奇3应助啊啊啊啊轩采纳,获得10
1秒前
科研通AI6.1应助cloud采纳,获得10
2秒前
2秒前
焉知非褔发布了新的文献求助10
3秒前
lucky完成签到,获得积分10
3秒前
3秒前
yznfly应助喝杯水再走采纳,获得50
3秒前
量子星尘发布了新的文献求助30
3秒前
5秒前
行路人发布了新的文献求助10
5秒前
卡卡完成签到,获得积分10
5秒前
宝玉完成签到 ,获得积分10
5秒前
6秒前
45465465456发布了新的文献求助10
7秒前
领导范儿应助武雨寒采纳,获得10
8秒前
8秒前
111发布了新的文献求助10
9秒前
Lycerdoctor发布了新的文献求助10
9秒前
9秒前
bkagyin应助45465465456采纳,获得10
12秒前
兴奋烨华完成签到 ,获得积分10
12秒前
Soho发布了新的文献求助10
12秒前
13秒前
Criminology34应助ADP采纳,获得10
13秒前
14秒前
淡淡芯完成签到 ,获得积分10
14秒前
czc发布了新的文献求助10
14秒前
18秒前
shunli顺利发布了新的文献求助10
19秒前
摸鱼大使发布了新的文献求助10
21秒前
21秒前
21秒前
如风随水发布了新的文献求助10
21秒前
22秒前
满意尔安完成签到,获得积分10
23秒前
02的秋天发布了新的文献求助10
23秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736699
求助须知:如何正确求助?哪些是违规求助? 5367371
关于积分的说明 15333576
捐赠科研通 4880461
什么是DOI,文献DOI怎么找? 2622875
邀请新用户注册赠送积分活动 1571758
关于科研通互助平台的介绍 1528582