Predictive Analysis of College Students' Creative Self-Efficacy Based on Decision Tree Modeling

决策树 计算机科学 心理学 机器学习
作者
M HONG,Xueli Wan,Linghui Fu,X. Ai
出处
期刊:Journal of Visualized Experiments [MyJoVE Corporation]
卷期号: (222)
标识
DOI:10.3791/68730
摘要

Creativity is a focal point in current psychological research, domestically and internationally. An individual's self-awareness of their creativity is vital for determining their creative potential, helping them understand their strengths and weaknesses, and enhancing their self-creativity. There are few studies on college students' self-perception of creativity and even fewer on using the decision tree (DT) to predict such self-perception. This study aimed to assess the effectiveness of using a modified C5.0 decision tree model (DTM) in predicting creative self-efficacy (CSE) among college students and to identify which variables could serve as predictors of CSE. In response to these questions, 607 college students in Sichuan Province, China, filled out a Strengths and Difficulties Questionnaire (SDQ) containing five sections: psychological resilience scale, academic self-efficacy scale, psychological sense of school membership, innovative behavior scale, and CSE scale. The method described involves systematically providing the SDQ, scoring the results, and assigning codes to the answers of 60 students. Using the SDQ sub-scales, a DTM called C5.0 was built to predict the types of behavioral risk. The DTM was trained and cross-validated, showing a 10-fold improvement, and its performance was evaluated by accuracy and F1-score. The results of the revised C5.0 DTM revealed that the significant predictive factors of CSE, in decreasing order of importance, are psychological trust, psychological sense of school membership, academic self-efficacy, and innovative behavior. By proving the DTM's effectiveness in predicting college students' CSE, this research developed the link between basic learning and CSE, increased the interpretation of CSE, and provided research support for enhancing college students' creativity and CSE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
欧力蟹完成签到,获得积分10
2秒前
Corn完成签到,获得积分10
3秒前
lihuan完成签到,获得积分10
3秒前
hrbbdhr完成签到,获得积分10
3秒前
3秒前
3秒前
medai发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
潘继坤发布了新的文献求助10
5秒前
完美世界应助邪恶大蟑螂采纳,获得10
6秒前
6秒前
7秒前
清流完成签到,获得积分10
7秒前
WangzX完成签到,获得积分10
7秒前
科研小黑完成签到,获得积分10
7秒前
7秒前
8秒前
无私的妍完成签到 ,获得积分10
8秒前
凌宇驳回了flic应助
8秒前
genesquared完成签到,获得积分10
9秒前
马不停蹄完成签到,获得积分10
11秒前
思源应助Pooh采纳,获得10
13秒前
归尘发布了新的文献求助10
13秒前
13秒前
caicai发布了新的文献求助10
13秒前
彭于晏应助材料人采纳,获得10
14秒前
14秒前
希希发布了新的文献求助10
14秒前
科目三应助洁净的天德采纳,获得10
14秒前
麦苗完成签到,获得积分10
15秒前
留胡子的小甜瓜完成签到,获得积分10
15秒前
听雨落完成签到,获得积分10
15秒前
SciGPT应助废寝忘食采纳,获得10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343316
求助须知:如何正确求助?哪些是违规求助? 4478987
关于积分的说明 13941205
捐赠科研通 4375914
什么是DOI,文献DOI怎么找? 2404365
邀请新用户注册赠送积分活动 1396915
关于科研通互助平台的介绍 1369240