Exploring the association between volatile organic compound exposure and chronic kidney disease: evidence from explainable machine learning methods

医学 肾脏疾病 联想(心理学) 疾病 重症监护医学 环境卫生 内科学 心理治疗师 心理学
作者
Liyan Jiang,Hongling Wang,Yang Xiao,Linlin Xu,Huoying Chen
出处
期刊:Renal Failure [Taylor & Francis]
卷期号:47 (1)
标识
DOI:10.1080/0886022x.2025.2520906
摘要

Chronic Kidney Disease (CKD) affects approximately 697.5 million people worldwide. Volatile organic compounds (VOCs) are emerging as potential risk factors, but their complex relationships with CKD may be underestimated by traditional linear methods. This study explores the association between urinary VOC metabolites and CKD risk using a combination of epidemiological and interpretable machine learning approaches. Data from the National Health and Nutrition Examination Survey (2011-March 2020 pre-pandemic) were analyzed to examine 15 urinary VOC metabolites. Analytical methods included multivariable logistic regression, LASSO regression, and five machine learning models: Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Multilayer Perceptron (MLP). SHapley Additive exPlanations (SHAP) analysis was used to enhance model interpretability. Significant associations were observed for metabolites including CEMA (N-Acetyl-S-(2-carboxyethyl)-L-cysteine) (OR = 1.66, 95% CI: 1.17-2.37), DHBMA (N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine) (OR = 1.95, 95% CI: 1.38-2.76), HMPMA (N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine) (OR = 2.18, 95% CI: 1.53-3.10), and PGA (Phenylglyoxylic acid) (OR = 1.66, 95% CI: 1.22-2.27). The XGBoost model demonstrated strong predictive performance, with SHAP analysis highlighting DHBMA as a key predictor. Inverse associations were observed for AAMA (N-Acetyl-S-(2-carbamoylethyl)-L-cysteine) and CYMA (N-Acetyl-S-(2-cyanoethyl)-L-cysteine) in their highest quartiles. This integrated approach identified significant associations between specific urinary VOC metabolites and CKD risk, particularly DHBMA. These findings underscore the role of environmental VOC exposure in CKD pathogenesis and may inform targeted prevention strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
机智雪晴完成签到,获得积分20
3秒前
灵长类发布了新的文献求助10
3秒前
简单的帽子完成签到,获得积分10
5秒前
无畏发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
maxiangyu发布了新的文献求助10
7秒前
李健的小迷弟应助wangli采纳,获得10
7秒前
8秒前
传奇3应助Zoeforever采纳,获得10
8秒前
9秒前
fan发布了新的文献求助10
10秒前
10秒前
bella发布了新的文献求助10
11秒前
11秒前
orixero应助科研通管家采纳,获得30
12秒前
Akim应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
隐形雁玉应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
HZQ应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
jjj应助科研通管家采纳,获得10
14秒前
thy完成签到,获得积分10
14秒前
Lucas应助科研通管家采纳,获得20
14秒前
隐形雁玉应助科研通管家采纳,获得10
14秒前
14秒前
烟花应助科研通管家采纳,获得10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170079
求助须知:如何正确求助?哪些是违规求助? 3705653
关于积分的说明 11693061
捐赠科研通 3391941
什么是DOI,文献DOI怎么找? 1860313
邀请新用户注册赠送积分活动 920305
科研通“疑难数据库(出版商)”最低求助积分说明 832649