Deep Learning Photo Processing for Periodontitis Screening

牙周炎 医学 接收机工作特性 置信区间 人工智能 联营 临床附着丧失 牙科 内科学 计算机科学
作者
Leran Tao,Yikai Li,Xinyu Wu,Yuting Gu,Yu Xie,Xiao Yu,Hsueh‐Chou Lai,Maurizio S. Tonetti
出处
期刊:Journal of Dental Research [SAGE Publishing]
标识
DOI:10.1177/00220345251347508
摘要

Late detection of periodontitis has significant health implications. Screening via oral images may serve as an accessible nonclinical method. This study tested the hypothesis that diagnostic information in oral images can aid a deep learning algorithm in detecting periodontitis cases. This cross-sectional diagnostic accuracy study involved consecutive subjects seeking care at Shanghai Ninth People’s Hospital, China, and their oral digital twins. The index test was a global activation pooling-based multi-instance deep learning model (DLM) based on pretrained ResNet50, developed and tested in 2 independent samples to identify stage II to IV periodontitis. The model did not use annotated landmarks on images but labeled cases based on a reference consisting of a periodontal clinical examination. The external testing dataset included oral images of subjects diagnosed based on panoramic radiographs. The performance was assessed by the area under the receiver-operating curve (AUROC), sensitivity, and specificity. A total of 387 subjects participated in the internal development and testing. The external testing dataset consisted of 183 subjects. DLM processing of a single frontal view oral image accurately identified stage II to IV periodontitis in the internal (AUROC = 0.93, 95% confidence interval [CI] 0.85–0.98) and external dataset (AUROC = 0.93, 95% CI 0.88–0.96). High consistency was observed between the regions of interest identified in the class activation heat maps and a periodontist (internal test: 99.66%; external test: 99.45%). DLM showed better sensitivity and specificity than clinicians with different skill levels. The multimodal combination of images and other nonclinical parameters led to only marginal improvements in accuracy. DLM processing of oral images shows potential for periodontal health screening. Artificial intelligence focuses on the important image areas but seems to capture features that are not apparent to clinicians. More development and validation are needed to introduce this approach as a screening tool to multiple populations worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
热情的大白完成签到 ,获得积分10
3秒前
怡然飞槐完成签到,获得积分10
6秒前
阿敬完成签到,获得积分10
8秒前
欣慰外绣完成签到,获得积分10
8秒前
xzn1123完成签到,获得积分0
11秒前
玺青一生完成签到 ,获得积分10
13秒前
17秒前
tmobiusx完成签到,获得积分10
18秒前
Regina完成签到 ,获得积分10
20秒前
蔓越莓完成签到 ,获得积分10
22秒前
小高同学完成签到,获得积分10
28秒前
Herbs完成签到 ,获得积分10
31秒前
万能图书馆应助CCL采纳,获得10
31秒前
sowhat完成签到 ,获得积分10
34秒前
Jupiter完成签到,获得积分10
36秒前
仙林AK47完成签到,获得积分10
40秒前
leyellows完成签到 ,获得积分10
41秒前
42秒前
doorxieyeah发布了新的文献求助10
45秒前
CCL完成签到,获得积分10
48秒前
狂野的钻石完成签到 ,获得积分10
54秒前
双双完成签到,获得积分20
55秒前
打卡下班应助Moihan采纳,获得10
56秒前
文静灵阳完成签到 ,获得积分10
57秒前
doorxieyeah完成签到,获得积分10
1分钟前
从容襄完成签到,获得积分10
1分钟前
双双发布了新的文献求助10
1分钟前
zcydbttj2011完成签到 ,获得积分10
1分钟前
marc107完成签到,获得积分10
1分钟前
Chnimike完成签到 ,获得积分10
1分钟前
清水完成签到,获得积分10
1分钟前
yar应助饱满南松采纳,获得10
1分钟前
1分钟前
eazin完成签到 ,获得积分10
1分钟前
hereiswby发布了新的文献求助10
1分钟前
Raine完成签到,获得积分10
1分钟前
大个应助hereiswby采纳,获得10
1分钟前
晓风完成签到,获得积分10
1分钟前
大白完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086863
求助须知:如何正确求助?哪些是违规求助? 3625687
关于积分的说明 11497520
捐赠科研通 3339129
什么是DOI,文献DOI怎么找? 1835785
邀请新用户注册赠送积分活动 903969
科研通“疑难数据库(出版商)”最低求助积分说明 822019