Deep Learning Photo Processing for Periodontitis Screening

牙周炎 医学 接收机工作特性 置信区间 人工智能 联营 临床附着丧失 牙科 内科学 计算机科学
作者
Leran Tao,Yikai Li,Xinyu Wu,Yuting Gu,Yu Xie,Xiao Yu,Hsueh‐Chou Lai,Maurizio S. Tonetti
出处
期刊:Journal of Dental Research [SAGE Publishing]
标识
DOI:10.1177/00220345251347508
摘要

Late detection of periodontitis has significant health implications. Screening via oral images may serve as an accessible nonclinical method. This study tested the hypothesis that diagnostic information in oral images can aid a deep learning algorithm in detecting periodontitis cases. This cross-sectional diagnostic accuracy study involved consecutive subjects seeking care at Shanghai Ninth People’s Hospital, China, and their oral digital twins. The index test was a global activation pooling-based multi-instance deep learning model (DLM) based on pretrained ResNet50, developed and tested in 2 independent samples to identify stage II to IV periodontitis. The model did not use annotated landmarks on images but labeled cases based on a reference consisting of a periodontal clinical examination. The external testing dataset included oral images of subjects diagnosed based on panoramic radiographs. The performance was assessed by the area under the receiver-operating curve (AUROC), sensitivity, and specificity. A total of 387 subjects participated in the internal development and testing. The external testing dataset consisted of 183 subjects. DLM processing of a single frontal view oral image accurately identified stage II to IV periodontitis in the internal (AUROC = 0.93, 95% confidence interval [CI] 0.85–0.98) and external dataset (AUROC = 0.93, 95% CI 0.88–0.96). High consistency was observed between the regions of interest identified in the class activation heat maps and a periodontist (internal test: 99.66%; external test: 99.45%). DLM showed better sensitivity and specificity than clinicians with different skill levels. The multimodal combination of images and other nonclinical parameters led to only marginal improvements in accuracy. DLM processing of oral images shows potential for periodontal health screening. Artificial intelligence focuses on the important image areas but seems to capture features that are not apparent to clinicians. More development and validation are needed to introduce this approach as a screening tool to multiple populations worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助ycy采纳,获得10
1秒前
6657完成签到,获得积分10
5秒前
心灵尔安发布了新的文献求助10
5秒前
刘娟发布了新的文献求助10
7秒前
9秒前
Lky完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助刘娟采纳,获得10
13秒前
李李李发布了新的文献求助10
13秒前
14秒前
15秒前
ycy发布了新的文献求助10
15秒前
wellscurry发布了新的文献求助10
15秒前
琳琳完成签到,获得积分20
17秒前
言希完成签到 ,获得积分10
17秒前
脑洞疼应助ljc采纳,获得10
18秒前
完美世界应助李西瓜采纳,获得10
18秒前
19秒前
Dogged完成签到 ,获得积分10
19秒前
沉默秋发布了新的文献求助100
20秒前
琳琳发布了新的文献求助10
20秒前
glscwd完成签到 ,获得积分10
21秒前
21秒前
霸气的如南完成签到 ,获得积分10
22秒前
小明发布了新的文献求助10
23秒前
123456发布了新的文献求助10
26秒前
王星星完成签到,获得积分10
28秒前
28秒前
丘比特应助Oliver采纳,获得10
28秒前
传奇3应助琳琳采纳,获得10
29秒前
Owen应助简单的桃子采纳,获得30
29秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4760384
求助须知:如何正确求助?哪些是违规求助? 4101291
关于积分的说明 12690486
捐赠科研通 3816600
什么是DOI,文献DOI怎么找? 2106897
邀请新用户注册赠送积分活动 1131495
关于科研通互助平台的介绍 1010245