催化作用
材料科学
碳纳米管
纳米颗粒
密度泛函理论
热解
电子转移
碳纤维
化学工程
电池(电)
甲醇
氧还原反应
纳米技术
物理化学
化学
电化学
计算化学
电极
复合数
有机化学
工程类
复合材料
功率(物理)
物理
量子力学
作者
Tianjin Zhi,Yan Li,Zhenxin Yi,Shunguan Zhu,Lin Zhang
出处
期刊:Small
[Wiley]
日期:2025-09-24
卷期号:21 (50): e08558-e08558
标识
DOI:10.1002/smll.202508558
摘要
Abstract Precise modulation of the coordination environment of Fe─N x sites is crucial yet challenging for enhancing the intrinsic activity of single‐atom Fe/N‐codoped carbon catalysts toward the oxygen reduction reaction (ORR). Herein, N‐doped carbon nanotubes embedded with Fe 3 C nanoparticles with abundant pyridinic‐N and Fe─N x active sites are prepared by simple pyrolysis of precursors containing Zn 2+ /Fe 2+ and cyano groups. The optimized Fe 3 C/FeN@CNT‐900 catalyst exhibits a remarkable ORR half‐wave potential ( E 1/2 ) of 0.89 V versus RHE, along with exceptional methanol tolerance and SCN − resistance. The power density of the zinc‐air battery with this cathode achieves 1.65 times of that of the battery using the Pt/C+RuO 2 catalyst. Experimental and theoretical analyses reveal that these enhancements arise from tailored electronic structures and optimized intermediate adsorption at Fe active centers. Synergistic catalysis between atomic Fe─N x sites and Fe 3 C nanoparticles lowers the energy barrier of the ORR rate‐determining step by facilitating interfacial electron transfer, as evidenced by density functional theory calculations. This work provides a rational strategy for designing high‐performance dual‐active sites in metal‐nitrogen‐carbon electrocatalysts and highlights the critical role of atomic‐nanoparticle interactions in advanced energy conversion systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI