TransU-Net++: Rethinking attention gated TransU-Net for deforestation mapping

亚马逊雨林 森林砍伐(计算机科学) 分割 生物群落 卷积神经网络 计算机科学 网(多面体) 人工智能 林业 地理 机器学习 数学 生态系统 生态学 生物 几何学 程序设计语言
作者
Ali Jamali,Swalpa Kumar Roy,Jonathan Li,Pedram Ghamisi
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:120: 103332-103332 被引量:25
标识
DOI:10.1016/j.jag.2023.103332
摘要

Deforestation has become a major cause of climate change, and as a result, both characterizing the drivers and estimating segmentation maps of deforestation have piqued the interest of researchers. In the computer vision domain, Vision Transformers (ViTs) have shown their superiority compared to extensively utilized convolutional neural networks (CNNs) over the last couple of years. Although, ViTs has several challenges, specifically in remote sensing image processing, including their significant complexity that increases the computation costs and their need for much higher reference data than that of CNNs. As such, in this paper, we introduce an attention gates aided TransU-Net, called TransU-Net++ for semantic segmentation with an application of deforestation mapping in two South American forest biomes, i.e., the Atlantic Forest and the Amazon Rainforest. The heterogeneous kernel convolution (HetConv), U-Net, attention gates, and ViTs are all utilized in the proposed TransU-Net++ to their advantage. The TransU-Net++ significantly increased the performance of TransU-Net's over the Atlantic Forest dataset by about 4%, 6%, and 16%, respectively, in terms of overall accuracy, F1-score, and recall, respectively.Moreover, the results show that the developed TrasnU-Net++ model (0.921) achieves the highest Area under the ROC Curve value in the 3-band Amazon forest dataset as compared to other segmentation models, including ICNet (0.667), ENet (0.69), SegNet (0.788), U-Net (0.871), Attention U-Net-2 (0.886), R2U-Net (0.888), TransU-Net (0.889), Swin U-Net (0.893), ResU-Net (0.896), U-Net+++ (0.9), and Attention U-Net (0.908), respectively. The code will be made publicly available at https://github.com/aj1365/TransUNetplus2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助你好采纳,获得10
1秒前
2秒前
虚幻的亦旋完成签到,获得积分10
3秒前
3秒前
Zixu完成签到,获得积分10
4秒前
4秒前
Jasper应助kepwake采纳,获得30
5秒前
6秒前
DT完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI2S应助彭新雨采纳,获得10
7秒前
肖静茹发布了新的文献求助10
8秒前
喜悦一曲发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
10秒前
10秒前
10秒前
英吉利25发布了新的文献求助10
10秒前
如意凡梅发布了新的文献求助10
11秒前
11秒前
zhan完成签到,获得积分10
12秒前
Cindy发布了新的文献求助10
12秒前
馒头小生完成签到,获得积分10
12秒前
12秒前
朝气发布了新的文献求助10
13秒前
冰夏完成签到,获得积分10
13秒前
13秒前
13秒前
大个应助D调的华丽采纳,获得10
13秒前
ANY发布了新的文献求助10
13秒前
FashionBoy应助大强采纳,获得10
13秒前
14秒前
lxfxlj发布了新的文献求助10
14秒前
15秒前
你好发布了新的文献求助10
15秒前
郭生发布了新的文献求助10
15秒前
acaizr发布了新的文献求助100
16秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886649
求助须知:如何正确求助?哪些是违规求助? 3428795
关于积分的说明 10762598
捐赠科研通 3153745
什么是DOI,文献DOI怎么找? 1741233
邀请新用户注册赠送积分活动 840589
科研通“疑难数据库(出版商)”最低求助积分说明 785447