Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN

人工智能 脑电图 模式识别(心理学) 计算机科学 分类器(UML) 特征提取 特征选择 集成学习 帕金森病 机器学习 语音识别 疾病 神经科学 医学 心理学 病理
作者
Majid Nour,Ümit Şentürk,Kemal Polat
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:161: 107031-107031 被引量:28
标识
DOI:10.1016/j.compbiomed.2023.107031
摘要

In this paper, we proposed a novel approach to diagnose and classify Parkinson's Disease (PD) using ensemble learning and 1D-PDCovNN, a novel deep learning technique. PD is a neurodegenerative disorder; early detection and correct classification are essential for better disease management. The primary aim of this study is to develop a robust approach to diagnosing and classifying PD using EEG signals. As the dataset, we have used the San Diego Resting State EEG dataset to evaluate our proposed method. The proposed method mainly consists of three stages. In the first stage, the Independent Component Analysis (ICA) method has been used as the pre-processing method to filter out the blink noises from the EEG signals. Also, the effect of the band showing motor cortex activity in the 7–30 Hz frequency band of EEG signals in diagnosing and classifying Parkinson's disease from EEG signals has been investigated. In the second stage, the Common Spatial Pattern (CSP) method has been used as the feature extraction to extract useful information from EEG signals. Finally, an ensemble learning approach, Dynamic Classifier Selection (DCS) in Modified Local Accuracy (MLA), has been employed in the third stage, consisting of seven different classifiers. As the classifier method, DCS in MLA, XGBoost, and 1D-PDCovNN classifier has been used to classify the EEG signals as the PD and healthy control (HC). We first used dynamic classifier selection to diagnose and classify Parkinson's disease (PD) from EEG signals, and promising results have been obtained. The performance of the proposed approach has been evaluated using the classification accuracy, F-1 score, kappa score, Jaccard score, ROC curve, recall, and precision values in the classification of PD with the proposed models. In the classification of PD, the combination of DCS in MLA achieved an accuracy of 99,31%. The results of this study demonstrate that the proposed approach can be used as a reliable tool for early diagnosis and classification of PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爆米花应助叽里咕噜采纳,获得10
1秒前
发疯老虎完成签到,获得积分10
1秒前
rundstedt完成签到 ,获得积分10
1秒前
1秒前
濮阳香完成签到 ,获得积分10
1秒前
1秒前
科研通AI5应助妖哥采纳,获得10
2秒前
琉璃脆发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
chf完成签到,获得积分20
3秒前
3秒前
3秒前
hzt驳回了Ava应助
3秒前
KevinT完成签到,获得积分10
3秒前
顾磊磊完成签到,获得积分10
3秒前
unowhoiam发布了新的文献求助10
3秒前
4秒前
4秒前
高万发布了新的文献求助10
4秒前
5秒前
余寻冬发布了新的文献求助10
6秒前
jhx发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
LEE发布了新的文献求助20
8秒前
8秒前
8秒前
wenwenya完成签到,获得积分20
9秒前
烂漫盼秋完成签到,获得积分20
9秒前
9秒前
Morpheus完成签到,获得积分10
9秒前
9秒前
MAY发布了新的文献求助10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4689571
求助须知:如何正确求助?哪些是违规求助? 4061795
关于积分的说明 12558997
捐赠科研通 3759434
什么是DOI,文献DOI怎么找? 2076232
邀请新用户注册赠送积分活动 1104935
科研通“疑难数据库(出版商)”最低求助积分说明 983802