Abstract The rapid growth of electric vehicles and portable electronics has led to a surge in lithium‐ion battery (LIB) consumption, creating an urgent need for efficient and sustainable recycling solutions. Among the established recycling methods, including pyrometallurgical, hydrometallurgical, and direct recycling, thermal treatment plays a critical role. However, conventional heating techniques are often energy‐intensive and time‐consuming due to their low heating rates. This highlights the importance of exploring advanced rapid heating technologies for recycling spent LIBs. This review examines the role of heating in various LIB recycling processes and systematically introduces emerging rapid heating technologies, such as microwave heating, joule heating, and short contact time heating. In addition, advanced approaches, including induction heating, plasma heating, and CSR heating processes, are discussed in terms of their principles, process flows, unique effects, and applications in LIB recycling. Finally, current challenges and future perspectives are outlined to support the efficient and scalable use of rapid heating technologies in spent LIB recycling, and the rapid heating process is also proposed for the efficient recycling of spent LIBs.