清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring factors in AI-based healthcare services adoption: integrating cognitive, social and technical perspectives

作者
Xiaoyi Chen,Yonggui Wang,Xiuli Sun
出处
期刊:Asia Pacific Journal of Marketing and Logistics [Emerald (MCB UP)]
卷期号:: 1-21
标识
DOI:10.1108/apjml-05-2025-0834
摘要

Purpose As artificial intelligence (AI) integrates into healthcare, understanding the factors influencing its adoption becomes increasingly pivotal. Healthcare’s distinctive context requires considering both AI emotional interaction capabilities and users’ cognitive abilities. Social influences also shape behavior through interpersonal interaction. Additionally, despite trust being widely recognized as critical, its mediating role between cognitive, technical and social factors and the adoption of AI-based healthcare remains insufficiently explored. This study develops an integrated “cognitive-technical-social” framework, aiming to systematically examine the mechanisms through which these factors influence trust in AI and adoption intentions. Design/methodology/approach Drawing on data from 319 valid questionnaires, this research employs partial least squares structural equation modeling (PLS-SEM) to test the proposed relationships. Findings The results reveal that social influence, digital technology self-efficacy and AI empathy significantly and positively affect both trust in AI and adoption intentions. AI literacy also positively influences adoption intentions. Moreover, trust in AI partially mediates the impact of social influence and AI empathy on adoption intentions, highlighting the critical role of trust in facilitating user adoption of AI-based healthcare services. Originality/value By integrating cognitive, technical and social dimensions into a theoretical framework, this research offers novel insights into the mechanisms of AI acceptance within healthcare settings. The results also provide actionable guidance for healthcare professionals and AI developers seeking to design more effective, empathetic and socially supported AI-based healthcare solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
萝卜猪完成签到,获得积分10
20秒前
SciGPT应助科研进化中采纳,获得10
23秒前
我是老大应助zz采纳,获得10
37秒前
深情安青应助和谐的芷文采纳,获得20
53秒前
科研通AI2S应助BNN1203381110采纳,获得10
59秒前
1分钟前
牛先生生完成签到,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
冷傲半邪完成签到,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得30
1分钟前
朱明完成签到 ,获得积分10
1分钟前
在水一方应助金沐栋采纳,获得10
1分钟前
1分钟前
1分钟前
青衫完成签到 ,获得积分10
1分钟前
orixero应助和谐的芷文采纳,获得10
1分钟前
天天快乐应助chunqiu采纳,获得30
1分钟前
思源应助白华苍松采纳,获得10
2分钟前
tt完成签到,获得积分10
2分钟前
和谐的芷文完成签到,获得积分10
2分钟前
chenjy202303完成签到,获得积分10
2分钟前
chunqiu关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
chunqiu发布了新的文献求助30
2分钟前
左左曦完成签到,获得积分10
2分钟前
2分钟前
zyjsunye完成签到 ,获得积分10
2分钟前
金沐栋发布了新的文献求助10
2分钟前
2分钟前
情怀应助金沐栋采纳,获得10
2分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
Huzhu应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529289
求助须知:如何正确求助?哪些是违规求助? 4618433
关于积分的说明 14562625
捐赠科研通 4557474
什么是DOI,文献DOI怎么找? 2497536
邀请新用户注册赠送积分活动 1477750
关于科研通互助平台的介绍 1449175