Plant tissues exhibit a layered architecture that makes spatial context decisive for interpreting transcriptional changes. This review explains why the location of gene expression is as important as its magnitude and synthesizes advances uniting single-cell/nucleus RNA-seq with spatial transcriptomics in plants. Surveyed topics include platform selection and material preparation; plant-specific sample processing and quality control; integration with epigenomic assays such as single-nucleus Assay for Transposase-Accessible Chromatin using sequencing (ATAC) and Multiome; and computational workflows for label transfer, deconvolution, spatial embedding, and neighborhood-aware cell–cell communication. Protoplast-based single-cell RNA sequencing (scRNA-seq) enables high-resolution profiling but introduces dissociation artifacts and cell-type biases, whereas ingle-nucleus RNA sequencing (snRNA-seq) improves the representation of recalcitrant lineages and reduces stress signatures while remaining compatible with multiomics profiling. Practical guidance is provided for mitigating ambient RNA, interpreting organellar and intronic metrics, identifying doublets, and harmonizing batches across chemistries and studies. Spatial platforms (Visium HD, Stereo-seq, bead arrays) and targeted imaging (Single-molecule fluorescence in situ hybridization (smFISH), Hairpin-chain-reaction FISH (HCR-FISH), Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH)) are contrasted with plant-specific adaptations and integration pipelines that anchor dissociated profiles in anatomical coordinates. Recent atlases in Arabidopsis, soybean, and maize illustrate how cell identities, chromatin accessibility, and spatial niches reveal developmental trajectories and stress responses jointly. A roadmap is outlined for moving from atlases to interventions by deriving gene regulatory networks, prioritizing cis-regulatory targets, and validating perturbations with spatial readouts in crops. Together, these principles support a transition from descriptive maps to mechanism-informed, low-pleiotropy engineering of agronomic traits.