Robust R-Peak Detection in Noisy ECGs via Strip-Attention YOLO with Multilead Fusion.

计算机科学 人工智能 融合 计算机视觉 模式识别(心理学) 语言学 哲学
作者
Peng Wang,Peng Tang,Hao Wang,Yuhang Liu,Qiang Li,Peng Zhang
出处
期刊:PubMed 卷期号:PP
标识
DOI:10.1109/jbhi.2025.3621703
摘要

The R-peak in electrocardiogram (ECG) signals is a critical physiological marker for the diagnosis of cardiovascular diseases. Although various R-peak detection methods have been proposed, their performance is often hindered by noise, especially in dynamic ECG monitoring. Furthermore, the potential of harnessing complementary information from 12-lead ECG signals has not been fully exploited. To address these challenges, this study conceptualized 12-lead ECG data as two-dimensional images and employed YOLOv5 as the model's backbone for R-peak detection, effectively transforming a signal segmentation task into an object detection task in images. Specifically, considering the characteristics of consistent R-peak positions across different leads, we proposed a strip attention mechanism to treat horizontal or vertical strips as tokens for computing inter- and intra-strip attention, enhancing the model's ability to capture R-peak positional information and likelihood. Additionally, a one-dimensional Manhattan distance-based NMS algorithm was used to minimize redundant detection frames, thereby enhancing model performance. The proposed model was rigorously evaluated on two publicly available datasets, INCART and LUDB, under varying noise conditions. On the INCART dataset, the model achieved F1 scores of 99.97%, 99.86%, 99.63%, and 98.00% at noise levels of Original, SNR = 10 dB, SNR = 5 dB, and SNR = 0 dB, respectively. Similarly, on the LUDB dataset, the F1 scores were 99.89%, 100%, 100%, and 99.86% for the corresponding noise levels. Extensive testing across multiple datasets and noise scenarios demonstrated that the proposed model outperformed existing state-of-the-art methods in terms of accuracy, noise robustness, and generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云升辰落发布了新的文献求助10
刚刚
1秒前
rubbish发布了新的文献求助10
1秒前
1秒前
1秒前
NexusExplorer应助呆瓜不呆采纳,获得10
3秒前
3秒前
科研通AI6应助奉奉酱采纳,获得10
3秒前
伯爵完成签到,获得积分10
3秒前
duoduo发布了新的文献求助10
4秒前
4秒前
tobeokay发布了新的文献求助20
4秒前
Hello应助阿敬采纳,获得30
4秒前
4秒前
5秒前
5秒前
乐乐应助大朋采纳,获得10
5秒前
科研通AI6应助细心山柏采纳,获得30
5秒前
Wri发布了新的文献求助10
6秒前
6秒前
ytzhang0587应助11采纳,获得20
6秒前
彭于晏应助daqing1725采纳,获得10
6秒前
Pig-prodigy完成签到,获得积分10
6秒前
owl完成签到,获得积分10
7秒前
天外来物应助乃惜采纳,获得10
7秒前
领导范儿应助不能吃了采纳,获得10
8秒前
8秒前
9秒前
充电宝应助百里烬言采纳,获得10
9秒前
Ryan发布了新的文献求助10
9秒前
黑咖啡完成签到,获得积分10
9秒前
10秒前
10秒前
happpy发布了新的文献求助10
10秒前
明明ming999_完成签到,获得积分10
10秒前
无花果应助行7采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
duoduo完成签到,获得积分10
11秒前
gzslwddhjx发布了新的文献求助10
11秒前
上官若男应助沟通亿心采纳,获得10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726