A learnable sampling method for scalable graph neural networks

计算机科学 可扩展性 人工神经网络 消息传递 图形 人工智能 采样(信号处理) 算法 理论计算机科学 分布式计算 滤波器(信号处理) 数据库 计算机视觉
作者
Weichen Zhao,Tiande Guo,Xiaoxi Yu,Congying Han
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 412-424 被引量:7
标识
DOI:10.1016/j.neunet.2023.03.015
摘要

With the development of graph neural networks, how to handle large-scale graph data has become an increasingly important topic. Currently, most graph neural network models which can be extended to large-scale graphs are based on random sampling methods. However, the sampling process in these models is detached from the forward propagation of neural networks. Moreover, quite a few works design sampling based on statistical estimation methods for graph convolutional networks and the weights of message passing in GCNs nodes are fixed, making these sampling methods not scalable to message passing networks with variable weights, such as graph attention networks. Noting the end-to-end learning capability of neural networks, we propose a learnable sampling method. It solves the problem that random sampling operations cannot calculate gradients and samples nodes with an unfixed probability. In this way, the sampling process is dynamically combined with the forward propagation process of the features, allowing for better training of the networks. And it can be generalized to all message passing models. In addition, we apply the learnable sampling method to GNNs and propose two models. Our method can be flexibly combined with different graph neural network models and achieves excellent accuracy on benchmark datasets with large graphs. Meanwhile, loss function converges to smaller values at a faster rate during training than past methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡小白菜完成签到,获得积分10
1秒前
小鸣完成签到 ,获得积分10
1秒前
哦吼吼吼吼完成签到 ,获得积分10
1秒前
是木易呀发布了新的文献求助30
2秒前
迷人夜香发布了新的文献求助30
2秒前
大个应助英俊的胜采纳,获得10
3秒前
purple完成签到 ,获得积分10
3秒前
郝绝山完成签到,获得积分10
3秒前
5秒前
郝绝山发布了新的文献求助10
7秒前
ZHY关注了科研通微信公众号
8秒前
9秒前
Orange应助cryjslong采纳,获得10
9秒前
六六发布了新的文献求助50
10秒前
10秒前
守墓人完成签到 ,获得积分10
10秒前
ZYT完成签到,获得积分10
13秒前
14秒前
糟糕的沂发布了新的文献求助10
14秒前
14秒前
16秒前
王若红关注了科研通微信公众号
16秒前
16秒前
小黄完成签到,获得积分20
16秒前
17秒前
18秒前
pluto应助狗123采纳,获得10
18秒前
学术巨婴完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
20秒前
21秒前
21秒前
23秒前
研友_LXONx8发布了新的文献求助10
23秒前
SunnyZjw发布了新的文献求助10
24秒前
fxf发布了新的文献求助10
25秒前
chenguoxin111发布了新的文献求助10
25秒前
LL1105发布了新的文献求助30
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784273
求助须知:如何正确求助?哪些是违规求助? 3329356
关于积分的说明 10241811
捐赠科研通 3044836
什么是DOI,文献DOI怎么找? 1671368
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759298