已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast inference of spinal neuromodulation for motor control using amortized neural networks

计算机科学 人工神经网络 神经调节 推论 一般化 电动机控制 脊髓损伤 功能性电刺激 腰骶关节 机器学习 人工智能 脊髓 神经科学 数学 刺激 数学分析 生物
作者
Lakshmi Narasimhan Govindarajan,Jonathan S. Calvert,Samuel R Parker,Minju Jung,Radu Darie,Priyanka Miranda,Elias Shaaya,David A. Borton,T. Serre
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056037-056037 被引量:8
标识
DOI:10.1088/1741-2552/ac9646
摘要

Objective.Epidural electrical stimulation (EES) has emerged as an approach to restore motor function following spinal cord injury (SCI). However, identifying optimal EES parameters presents a significant challenge due to the complex and stochastic nature of muscle control and the combinatorial explosion of possible parameter configurations. Here, we describe a machine-learning approach that leverages modern deep neural networks to learn bidirectional mappings between the space of permissible EES parameters and target motor outputs.Approach.We collected data from four sheep implanted with two 24-contact EES electrode arrays on the lumbosacral spinal cord. Muscle activity was recorded from four bilateral hindlimb electromyography (EMG) sensors. We introduce a general learning framework to identify EES parameters capable of generating desired patterns of EMG activity. Specifically, we first amortize spinal sensorimotor computations in a forward neural network model that learns to predict motor outputs based on EES parameters. Then, we employ a second neural network as an inverse model, which reuses the amortized knowledge learned by the forward model to guide the selection of EES parameters.Main results.We found that neural networks can functionally approximate spinal sensorimotor computations by accurately predicting EMG outputs based on EES parameters. The generalization capability of the forward model critically benefited our inverse model. We successfully identified novel EES parameters, in under 20 min, capable of producing desired target EMG recruitment duringin vivotesting. Furthermore, we discovered potential functional redundancies within the spinal sensorimotor networks by identifying unique EES parameters that result in similar motor outcomes. Together, these results suggest that our framework is well-suited to probe spinal circuitry and control muscle recruitment in a completely data-driven manner.Significance.We successfully identify novel EES parameters within minutes, capable of producing desired EMG recruitment. Our approach is data-driven, subject-agnostic, automated, and orders of magnitude faster than manual approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅辰完成签到 ,获得积分10
5秒前
5秒前
9秒前
莀莀完成签到 ,获得积分10
15秒前
15秒前
15秒前
科研小南完成签到 ,获得积分10
17秒前
Wang发布了新的文献求助10
22秒前
所所应助谦让溪灵采纳,获得10
22秒前
CodeCraft应助受伤的迎松采纳,获得10
23秒前
29秒前
大模型应助Wang采纳,获得10
33秒前
SiO2完成签到 ,获得积分10
33秒前
iceice发布了新的文献求助10
36秒前
37秒前
LHT完成签到,获得积分10
40秒前
科研通AI2S应助Frost采纳,获得10
42秒前
lull发布了新的文献求助10
43秒前
CodeCraft应助iceice采纳,获得10
44秒前
45秒前
MrH完成签到,获得积分10
47秒前
47秒前
刻苦珠发布了新的文献求助10
48秒前
48秒前
ding应助栗子采纳,获得10
48秒前
51秒前
充电宝应助hqc采纳,获得10
54秒前
zhanghao发布了新的文献求助10
54秒前
Wang发布了新的文献求助10
54秒前
54秒前
Kyle完成签到,获得积分20
55秒前
称心乾完成签到,获得积分10
56秒前
hehe发布了新的文献求助10
57秒前
59秒前
e麓绝尘完成签到 ,获得积分10
1分钟前
华仔应助zdy采纳,获得10
1分钟前
20230321发布了新的文献求助10
1分钟前
1分钟前
英姑应助李志华采纳,获得10
1分钟前
刘青发布了新的文献求助20
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784673
求助须知:如何正确求助?哪些是违规求助? 3329836
关于积分的说明 10243563
捐赠科研通 3045204
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800480
科研通“疑难数据库(出版商)”最低求助积分说明 759416