Deep Learning Based Tongue Prickles Detection in Traditional Chinese Medicine

舌头 深度学习 人工智能 计算机科学 模式识别(心理学) 计算机视觉 医学 病理
作者
Xinzhou Wang,Siyan Luo,Guihua Tian,Xiang-rong Rao,Bin He,Fuchun Sun
出处
期刊:Evidence-based Complementary and Alternative Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-12
标识
DOI:10.1155/2022/5899975
摘要

Tongue diagnosis is a convenient and noninvasive clinical practice of traditional Chinese medicine (TCM), having existed for thousands of years. Prickle, as an essential indicator in TCM, appears as a large number of red thorns protruding from the tongue. The term "prickly tongue" has been used to describe the flow of qi and blood in TCM and assess the conditions of disease as well as the health status of subhealthy people. Different location and density of prickles indicate different symptoms. As proved by modern medical research, the prickles originate in the fungiform papillae, which are enlarged and protrude to form spikes like awn. Prickle recognition, however, is subjective, burdensome, and susceptible to external factors. To solve this issue, an end-to-end prickle detection workflow based on deep learning is proposed. First, raw tongue images are fed into the Swin Transformer to remove interference information. Then, segmented tongues are partitioned into four areas: root, center, tip, and margin. We manually labeled the prickles on 224 tongue images with the assistance of an OpenCV spot detector. After training on the labeled dataset, the super-resolutionfaster-RCNN extracts advanced tongue features and predicts the bounding box of each single prickle. We show the synergy of deep learning and TCM by achieving a 92.42% recall, which is 2.52% higher than the previous work. This work provides a quantitative perspective for symptoms and disease diagnosis according to tongue characteristics. Furthermore, it is convenient to transfer this portable model to detect petechiae or tooth-marks on tongue images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AFF发布了新的文献求助10
刚刚
小乔同学完成签到,获得积分10
刚刚
2秒前
2秒前
闫111发布了新的文献求助10
2秒前
怕孤单的幼荷完成签到 ,获得积分10
3秒前
gjp发布了新的文献求助10
4秒前
qi发布了新的文献求助30
5秒前
5秒前
Andorchid发布了新的文献求助10
7秒前
啦啦啦完成签到 ,获得积分10
9秒前
ZiyuanLi发布了新的文献求助10
9秒前
Answer完成签到,获得积分10
10秒前
illusion2019应助nilou采纳,获得10
11秒前
英俊的铭应助豆⑧采纳,获得10
12秒前
1233330完成签到 ,获得积分10
19秒前
打打应助家立诚采纳,获得10
20秒前
22秒前
小黄完成签到,获得积分10
23秒前
什么也难不倒我完成签到 ,获得积分10
24秒前
24秒前
24秒前
聪慧语山完成签到 ,获得积分10
25秒前
豆⑧发布了新的文献求助10
26秒前
139完成签到 ,获得积分0
26秒前
27秒前
852应助小丫头采纳,获得10
27秒前
29秒前
30秒前
31秒前
yujx发布了新的文献求助10
34秒前
Andorchid完成签到,获得积分10
35秒前
科研通AI5应助Hui采纳,获得10
35秒前
慕青应助老夫子采纳,获得10
36秒前
36秒前
旧梦如烟发布了新的文献求助10
36秒前
guangshuang发布了新的文献求助10
36秒前
xiongqi完成签到 ,获得积分10
37秒前
吾问无为谓完成签到,获得积分20
37秒前
科研通AI2S应助asdfqwer采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734