亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based Tongue Prickles Detection in Traditional Chinese Medicine

舌头 深度学习 人工智能 计算机科学 模式识别(心理学) 计算机视觉 医学 病理
作者
Xinzhou Wang,Siyan Luo,Guihua Tian,Xiang-rong Rao,Bin He,Fuchun Sun
出处
期刊:Evidence-based Complementary and Alternative Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-12
标识
DOI:10.1155/2022/5899975
摘要

Tongue diagnosis is a convenient and noninvasive clinical practice of traditional Chinese medicine (TCM), having existed for thousands of years. Prickle, as an essential indicator in TCM, appears as a large number of red thorns protruding from the tongue. The term "prickly tongue" has been used to describe the flow of qi and blood in TCM and assess the conditions of disease as well as the health status of subhealthy people. Different location and density of prickles indicate different symptoms. As proved by modern medical research, the prickles originate in the fungiform papillae, which are enlarged and protrude to form spikes like awn. Prickle recognition, however, is subjective, burdensome, and susceptible to external factors. To solve this issue, an end-to-end prickle detection workflow based on deep learning is proposed. First, raw tongue images are fed into the Swin Transformer to remove interference information. Then, segmented tongues are partitioned into four areas: root, center, tip, and margin. We manually labeled the prickles on 224 tongue images with the assistance of an OpenCV spot detector. After training on the labeled dataset, the super-resolutionfaster-RCNN extracts advanced tongue features and predicts the bounding box of each single prickle. We show the synergy of deep learning and TCM by achieving a 92.42% recall, which is 2.52% higher than the previous work. This work provides a quantitative perspective for symptoms and disease diagnosis according to tongue characteristics. Furthermore, it is convenient to transfer this portable model to detect petechiae or tooth-marks on tongue images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
冷酷愚志完成签到,获得积分10
44秒前
正直的松鼠完成签到 ,获得积分10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
卜哥完成签到,获得积分10
2分钟前
Crazybow5完成签到,获得积分10
3分钟前
光亮静槐完成签到 ,获得积分10
3分钟前
3分钟前
重庆森林发布了新的文献求助10
3分钟前
英姑应助勤恳依霜采纳,获得10
4分钟前
单薄的蓝天完成签到,获得积分10
4分钟前
CipherSage应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
大模型应助重庆森林采纳,获得10
4分钟前
John完成签到,获得积分10
4分钟前
独孤家驹完成签到 ,获得积分10
5分钟前
冷傲迎梅完成签到 ,获得积分10
5分钟前
balko发布了新的文献求助10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
6分钟前
小二郎应助johnzsin采纳,获得10
6分钟前
6分钟前
苗苗应助balko采纳,获得10
7分钟前
7分钟前
7分钟前
johnzsin发布了新的文献求助10
7分钟前
外向的妍完成签到,获得积分10
7分钟前
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
咯咯咯完成签到 ,获得积分10
8分钟前
www完成签到,获得积分10
9分钟前
浮游应助科研通管家采纳,获得10
10分钟前
浮游应助科研通管家采纳,获得10
10分钟前
赘婿应助科研通管家采纳,获得10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116587
求助须知:如何正确求助?哪些是违规求助? 4323211
关于积分的说明 13469976
捐赠科研通 4155574
什么是DOI,文献DOI怎么找? 2277377
邀请新用户注册赠送积分活动 1279208
关于科研通互助平台的介绍 1217236