A Multicenter Study on Carotid Ultrasound Plaque Tissue Characterization and Classification Using Six Deep Artificial Intelligence Models: A Stroke Application

人工智能 无症状的 超声波 颈动脉 人工神经网络 深度学习 冲程(发动机) 模式识别(心理学) 表征(材料科学) 生物医学工程 医学 机器学习 计算机科学 放射科 材料科学 病理 内科学 工程类 机械工程 纳米技术
作者
Luca Saba,Sanagala S. Skandha,Suneet Gupta,Vijaya Kumar Koppula,John R. Laird,Vijay Viswanathan,João Sanches,George D. Kitas,Amer M. Johri,Neeraj Sharma,Andrew Nicolaides,Jasjit S. Suri
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:36
标识
DOI:10.1109/tim.2021.3052577
摘要

Atherosclerotic plaque in carotid arteries can ultimately lead to cerebrovascular events if not monitored. The objectives of this study are (a) to design a set of artificial intelligence (AI)-based tissue characterization and classification (TCC) systems (Atheromatic 2.0, AtheroPoint, CA, USA) using ultrasound-based carotid artery plaque scans collected from multiple centers and (b) to evaluate the AI performance. We hypothesize that symptomatic plaque is more scattered than asymptomatic plaque. Therefore, the AI system can learn, characterize, and classify them automatically. We developed six kinds of AI systems: four machine learning (ML) systems, one transfer learning (TL) system, and one deep learning (DL) architecture with different layers. Atheromatic 2.0 uses two types of plaque characterization: (a) an AI-based mean feature strength (MFS) and (b) bispectrum analysis. Three kinds of data were collected: London, Lisbon, and Combined (London + Lisbon). We balanced and then augmented five folds to conduct 3-D optimization for optimal number of AI layers versus folds. Using K10 (90% training, 10% testing), the mean accuracies for DL, TL, and ML over the mean of the three data sets were 93.55%, 94.55%, and 89%, respectively. The corresponding mean AUCs were 0.938, 0.946, and 0.889 (p <; 0.0001), respectively. AI paradigms showed an improvement by 10.41% and 3.32% for London and Lisbon in comparison to Atheromatic 1.0, respectively. On characterization, for all three data sets, MFS (symptomatic) > MFS (asymptomatic) by 46.56%, 19.40%, and 53.84%, respectively, thus validating our hypothesis. Atheromatic 2.0 showed consistent and stable results and is useful for carotid plaque tissue classification and characterization for vascular surgery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伍盎完成签到,获得积分10
1秒前
1秒前
2秒前
刘子豪完成签到,获得积分20
2秒前
4秒前
秋辞发布了新的文献求助10
5秒前
MH应助dai采纳,获得10
6秒前
繁荣的豁发布了新的文献求助10
6秒前
刘子豪发布了新的文献求助30
6秒前
li完成签到,获得积分10
7秒前
行走人生完成签到,获得积分10
7秒前
领导范儿应助1234采纳,获得10
9秒前
黎明星发布了新的文献求助10
9秒前
9秒前
研猫完成签到 ,获得积分10
9秒前
max发布了新的文献求助10
10秒前
talpionchen完成签到,获得积分10
10秒前
迷人的平松完成签到,获得积分10
10秒前
小吴完成签到,获得积分20
10秒前
碗碗发布了新的文献求助10
11秒前
共享精神应助哼哼采纳,获得10
13秒前
13秒前
Singularity应助0099采纳,获得10
15秒前
17秒前
大个应助lizhiqian2024采纳,获得10
17秒前
勤奋的鲂完成签到,获得积分20
17秒前
李荣航发布了新的文献求助10
18秒前
18秒前
矿小黑完成签到,获得积分10
18秒前
归尘完成签到,获得积分10
19秒前
19秒前
20秒前
SciGPT应助明理的小甜瓜采纳,获得10
20秒前
彭于晏应助Monn采纳,获得10
21秒前
温暖幻桃发布了新的文献求助10
22秒前
gaoqg完成签到,获得积分10
22秒前
彭于彦祖应助称心乐枫采纳,获得10
22秒前
翟闻雨发布了新的文献求助10
23秒前
小白完成签到,获得积分10
24秒前
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806811
求助须知:如何正确求助?哪些是违规求助? 3351524
关于积分的说明 10354611
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684489
邀请新用户注册赠送积分活动 809716
科研通“疑难数据库(出版商)”最低求助积分说明 765635