亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of Deep and Traditional Learning Methods for Email Spam Filtering

计算机科学 垃圾邮件 人工智能 机器学习 深度学习 卷积神经网络 滤波器(信号处理) 互联网 万维网 计算机视觉
作者
Abdullah Sheneamer
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:12 (1) 被引量:7
标识
DOI:10.14569/ijacsa.2021.0120164
摘要

Electronic mail, or email, is a method for com-municating using the internet which is inexpensive, effective, and fast. Spam is a type of email where unwanted messages, usually unwanted commercial messages, are distributed in large quantities by a spammer. The objective of such behavior is to harm email users; these messages need to be detected and prevented from being sent to users in the first place. In order to filter these emails, the developers have used machine learning methods. This paper discusses different methods which are used deep learning methods such as a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models with(out) a GloVe model in order to classify spam and non-spam messages. These models are only based on email data, and the extraction set of features is automatic. In addition, our work provides a comparison between traditional machine learning and deep learning algorithms on spam datasets to find out the best way to intrusion detection. The results indicate that deep learning offers improved performance of precision, recall, and accuracy. As far as we are aware, deep learning methods show great promise in being able to filter email spam, therefore we have performed a comparison of various deep learning methods with traditional machine learning methods. Using a benchmark dataset consisting of 5,243 spam and 16,872 not-spam and SMS messages, the highest achieved accuracy score is 96.52% using CNN with the GloVe model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Lancet采纳,获得10
5秒前
9秒前
11秒前
wuming完成签到,获得积分10
12秒前
Ava应助cc采纳,获得10
19秒前
24秒前
testmanfuxk完成签到,获得积分10
26秒前
cc发布了新的文献求助10
30秒前
张流筝完成签到 ,获得积分10
44秒前
充电宝应助mmyhn采纳,获得10
44秒前
科研通AI5应助ypyue采纳,获得10
56秒前
小郭子完成签到,获得积分10
1分钟前
深情安青应助小郭子采纳,获得10
1分钟前
1分钟前
ypyue完成签到,获得积分10
1分钟前
1分钟前
jeff发布了新的文献求助10
1分钟前
ypyue发布了新的文献求助10
1分钟前
ffl完成签到 ,获得积分10
1分钟前
我是老大应助有人采纳,获得30
1分钟前
今后应助ypyue采纳,获得10
1分钟前
科目三应助Howeveran采纳,获得10
1分钟前
科研通AI5应助番番采纳,获得10
1分钟前
1分钟前
zjx完成签到,获得积分10
1分钟前
科研通AI5应助可靠的寒风采纳,获得10
1分钟前
1分钟前
Howeveran发布了新的文献求助10
2分钟前
2分钟前
2分钟前
CC发布了新的文献求助10
2分钟前
preepero发布了新的文献求助10
2分钟前
preepero完成签到,获得积分10
2分钟前
zzhang完成签到,获得积分20
2分钟前
脑洞疼应助CC采纳,获得10
2分钟前
爱莉希雅完成签到 ,获得积分10
2分钟前
科研通AI5应助zzhang采纳,获得10
2分钟前
2分钟前
盐植物完成签到,获得积分10
2分钟前
四氧化三铁完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333675
关于积分的说明 10262958
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673602
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760504