亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen L. H. Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:227
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
40秒前
澄碧千顷完成签到 ,获得积分10
42秒前
47秒前
51秒前
wang发布了新的文献求助30
57秒前
chenwuhao完成签到 ,获得积分10
1分钟前
函数完成签到 ,获得积分10
1分钟前
2分钟前
MizuAsagi发布了新的文献求助50
2分钟前
重要问芙brk完成签到,获得积分10
2分钟前
3分钟前
zzzwhy发布了新的文献求助10
3分钟前
Ava应助11采纳,获得10
3分钟前
汉堡包应助11采纳,获得10
3分钟前
科研通AI5应助迷路枫采纳,获得10
3分钟前
3分钟前
zzzwhy完成签到,获得积分20
3分钟前
迷路枫发布了新的文献求助10
3分钟前
在水一方应助JY采纳,获得10
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
贝儿完成签到 ,获得积分10
4分钟前
科研通AI5应助zzzwhy采纳,获得10
4分钟前
迷路枫完成签到,获得积分20
4分钟前
爆米花应助Kevin采纳,获得10
5分钟前
earthai完成签到,获得积分10
5分钟前
仁者无惧完成签到 ,获得积分10
6分钟前
6分钟前
小马甲应助科研通管家采纳,获得10
6分钟前
6分钟前
山橘月发布了新的文献求助10
6分钟前
芝麻汤圆完成签到,获得积分10
6分钟前
自然之水完成签到,获得积分10
6分钟前
6分钟前
Kevin发布了新的文献求助10
7分钟前
糖伯虎完成签到 ,获得积分10
7分钟前
binyao2024完成签到,获得积分10
8分钟前
王子娇完成签到 ,获得积分10
8分钟前
穆振家完成签到,获得积分10
8分钟前
豌豆发布了新的文献求助10
8分钟前
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244180
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483