Molecular insights of NADPH oxidases and its pathological consequences

活性氧 氧化应激 生物 细胞生物学 NADPH氧化酶 生物化学
作者
Bhargav N. Waghela,Foram U. Vaidya,Yashika Agrawal,Manas Kumar Santra,Vinita Mishra,Chandramani Pathak
出处
期刊:Cell Biochemistry and Function [Wiley]
卷期号:39 (2): 218-234 被引量:27
标识
DOI:10.1002/cbf.3589
摘要

Reactive oxygen species (ROS), formed by the partial reduction of oxygen, were for a long time considered to be a byproduct of cellular metabolism. Since, increase in cellular levels of ROS results in oxidative stress leading to damage of nucleic acids, proteins, and lipids resulting in numerous pathological conditions; ROS was considered a bane for aerobic species. Hence, the discovery of NADPH oxidases (NOX), an enzyme family that specifically generates ROS as its prime product came as a surprise to redox biologists. NOX family proteins participate in various cellular functions including cell proliferation and differentiation, regulation of genes and protein expression, apoptosis, and host defence immunological response. Balanced expression and activation of NOX with subsequent production of ROS are critically important to regulate various genes and proteins to maintain homeostasis of the cell. However, dysregulation of NOX activation leading to enhanced ROS levels is associated with various pathophysiologies including diabetes, cardiovascular diseases, neurodegenerative diseases, ageing, atherosclerosis, and cancer. Although our current knowledge on NOX signifies its importance in the normal functioning of various cellular pathways; yet the choice of ROS producing enzymes which can tip the scale from homeostasis toward damage, as mediators of biological functions remain an oddity. Though the role of NOX in maintaining normal cellular functions is now deemed essential, yet its dysregulation leading to catastrophic events cannot be denied. Hence, this review focuses on the involvement of NOX enzymes in various pathological conditions imploring them as possible targets for therapies. Significance of the study The NOXs are multi‐subunit enzymes that generate ROS as a prime product. NOX generated ROS are usually regulated by various molecular factors and play a vital role in different physiological processes. The dysregulation of NOX activity is associated with pathological consequences. Recently, the dynamic proximity of NOX enzymes with different molecular signatures of pathologies has been studied extensively. It is essential to identify the precise role of NOX machinery in its niche during the progression of pathology. Although inhibition of NOX could be a promising approach for therapeutic interventions, it is critical to expand the current understanding of NOX's dynamicity and shed light on their molecular partners and regulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻羿完成签到 ,获得积分10
刚刚
刚刚
boluohu发布了新的文献求助10
1秒前
1秒前
Miranda完成签到,获得积分10
1秒前
林天发布了新的文献求助30
2秒前
3秒前
3秒前
残忆完成签到 ,获得积分10
3秒前
陈住气完成签到,获得积分10
3秒前
南方周末发布了新的文献求助10
4秒前
马前人发布了新的文献求助10
5秒前
Levon应助LEI采纳,获得20
5秒前
酷炫茉莉发布了新的文献求助10
5秒前
善学以致用应助Helio采纳,获得10
5秒前
XD824发布了新的文献求助10
6秒前
夏天的风完成签到,获得积分10
6秒前
6秒前
科研通AI5应助栗子采纳,获得10
6秒前
大个应助小包子采纳,获得10
7秒前
Hello应助坛子采纳,获得10
7秒前
搞怪不斜发布了新的文献求助10
8秒前
8秒前
乐乐应助吴硫采纳,获得10
8秒前
9秒前
大成子发布了新的文献求助10
9秒前
科研通AI5应助胡杨采纳,获得10
10秒前
tracey完成签到 ,获得积分10
10秒前
_Forelsket_完成签到,获得积分10
10秒前
朴实的小萱完成签到 ,获得积分10
11秒前
yzl科研爱我完成签到,获得积分10
11秒前
11秒前
叶子完成签到,获得积分10
13秒前
科研通AI5应助轻松豁采纳,获得30
13秒前
13秒前
奇一完成签到,获得积分10
13秒前
14秒前
14秒前
haorui完成签到,获得积分10
15秒前
聆听完成签到,获得积分10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809412
求助须知:如何正确求助?哪些是违规求助? 3354019
关于积分的说明 10368252
捐赠科研通 3070280
什么是DOI,文献DOI怎么找? 1686150
邀请新用户注册赠送积分活动 810833
科研通“疑难数据库(出版商)”最低求助积分说明 766384