亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Plants are visited by more pollinator species than pollination syndromes predicted in an oceanic island community

花蜜 生物多样性 物种丰富度 石斑鱼科
作者
Xiangping Wang,Meihong Wen,Xin Qian,Nancai Pei,Dianxiang Zhang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:10 (1) 被引量:10
标识
DOI:10.1038/s41598-020-70954-7
摘要

Abstract The pollination syndrome concept has provided powerful utility in understanding the evolution and adaptation of floral traits. However, the utility of this conception has been questioned on the grounds that flowers usually attract a broader spectrum of visitors than one might expect. Furthermore, the relationship between plant specialization and floral traits is poorly understood. Here, we examined the applicability of using the pollination syndrome to predict the pollinators of plants on Yongxing Island. We used the species-level specialization of pollination networks to compare the difference of plant ecological specialization among floral traits. The result of full model was not significant, indicating that floral traits did not affect the pollinator functional groups. The five floral traits explained only 22.5% of the pollinator’s visitation preference. Our results showed that plants were visited by more pollinator species than pollination syndromes predicted. Plants with restrictive flowers showed higher specialization than those with unrestrictive flowers, while other floral traits exhibited no significant effect on plant specialization. Generalized pollination system on oceanic island might influence the predictive accuracy of pollination syndromes and the relationship between floral traits and plant ecological specialization. Our findings highlighted the utility and limitations of pollination syndromes concept in oceanic island communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助DaYongDan采纳,获得10
8秒前
19秒前
胖小羊完成签到 ,获得积分10
26秒前
52秒前
Orange应助CMUSK采纳,获得10
52秒前
JamesPei应助科研通管家采纳,获得10
55秒前
领导范儿应助科研通管家采纳,获得10
55秒前
馆长应助科研通管家采纳,获得10
55秒前
1分钟前
平常的问雁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
CMUSK发布了新的文献求助10
1分钟前
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
唐泽雪穗应助勤恳依霜采纳,获得10
1分钟前
2分钟前
Omni完成签到,获得积分10
2分钟前
朴素小鼠标完成签到,获得积分10
2分钟前
2分钟前
jyy发布了新的文献求助30
2分钟前
2分钟前
2分钟前
DaYongDan发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
月军完成签到,获得积分10
3分钟前
3分钟前
benzene完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
尔信完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
奕奕发布了新的文献求助10
4分钟前
sleepingfish应助白华苍松采纳,获得20
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851917
求助须知:如何正确求助?哪些是违规求助? 4150328
关于积分的说明 12856905
捐赠科研通 3898501
什么是DOI,文献DOI怎么找? 2142472
邀请新用户注册赠送积分活动 1162233
关于科研通互助平台的介绍 1062512