Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning

高光谱成像 随机森林 计算机科学 支持向量机 集成学习 人工智能 适应性 特征选择 遥感 模式识别(心理学) 机器学习 生态学 生物 地质学
作者
Luwei Feng,Zhou Zhang,Yuchi Ma,Qingyun Du,Parker Williams,Jessica L. Drewry,Brian D. Luck
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 2028-2028 被引量:201
标识
DOI:10.3390/rs12122028
摘要

Alfalfa is a valuable and intensively produced forage crop in the United States, and the timely estimation of its yield can inform precision management decisions. However, traditional yield assessment approaches are laborious and time-consuming, and thus hinder the acquisition of timely information at the field scale. Recently, unmanned aerial vehicles (UAVs) have gained significant attention in precision agriculture due to their efficiency in data acquisition. In addition, compared with other imaging modalities, hyperspectral data can offer higher spectral fidelity for constructing narrow-band vegetation indices which are of great importance in yield modeling. In this study, we performed an in-season alfalfa yield prediction using UAV-based hyperspectral images. Specifically, we firstly extracted a large number of hyperspectral indices from the original data and performed a feature selection to reduce the data dimensionality. Then, an ensemble machine learning model was developed by combining three widely used base learners including random forest (RF), support vector regression (SVR) and K-nearest neighbors (KNN). The model performance was evaluated on experimental fields in Wisconsin. Our results showed that the ensemble model outperformed all the base learners and a coefficient of determination (R2) of 0.874 was achieved when using the selected features. In addition, we also evaluated the model adaptability on different machinery compaction treatments, and the results further demonstrate the efficacy of the proposed ensemble model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的无心完成签到,获得积分10
6秒前
7秒前
善学以致用应助卜婉君采纳,获得10
8秒前
iY发布了新的文献求助10
11秒前
11秒前
13秒前
王子发布了新的文献求助10
13秒前
封尘逸动完成签到,获得积分10
15秒前
宇心完成签到,获得积分10
15秒前
16秒前
刘亿发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
seurat发布了新的文献求助10
23秒前
24秒前
陈皮完成签到 ,获得积分10
28秒前
共享精神应助卜婉君采纳,获得10
32秒前
星辰大海应助橘子采纳,获得30
33秒前
34秒前
廖佰城完成签到,获得积分10
35秒前
oboy应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
Owen应助科研通管家采纳,获得20
36秒前
YangDong应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
ding应助科研通管家采纳,获得10
36秒前
孙燕应助科研通管家采纳,获得10
36秒前
研友_VZG7GZ应助科研通管家采纳,获得50
36秒前
oboy应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
36秒前
威武外套发布了新的文献求助10
38秒前
38秒前
量子星尘发布了新的文献求助10
40秒前
我来学习学习完成签到,获得积分10
40秒前
CipherSage应助神内小大夫采纳,获得10
42秒前
42秒前
焱垚完成签到,获得积分10
43秒前
44秒前
45秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867092
求助须知:如何正确求助?哪些是违规求助? 3409334
关于积分的说明 10663193
捐赠科研通 3133480
什么是DOI,文献DOI怎么找? 1728248
邀请新用户注册赠送积分活动 832848
科研通“疑难数据库(出版商)”最低求助积分说明 780510