纳米医学
抗菌剂
生物相容性
纳米材料
材料科学
生物传感器
微生物学
纳米技术
纳米颗粒
生物
冶金
作者
Anisha Anand,Gopinathan Manavalan,Ranju Prasad Mandal,Huan‐Tsung Chang,Yi‐Ru Chiou,Chih‐Ching Huang
标识
DOI:10.2174/1381612825666191216150948
摘要
The prevention and treatment of various infections caused by microbes through antibiotics are becoming less effective due to antimicrobial resistance. Researches are focused on antimicrobial nanomaterials to inhibit bacterial growth and destroy the cells, to replace conventional antibiotics. Recently, carbon dots (C-Dots) become attractive candidates for a wide range of applications, including the detection and treatment of pathogens. In addition to low toxicity, ease of synthesis and functionalization, and high biocompatibility, C-Dots show excellent optical properties such as multi-emission, high brightness, and photostability. C-Dots have shown great potential in various fields, such as biosensing, nanomedicine, photo-catalysis, and bioimaging. This review focuses on the origin and synthesis of various C-Dots with special emphasis on bacterial detection, the antibacterial effect of CDots, and their mechanism. Keywords: Carbon quantum dots, fluorescence, bacterial detection, antimicrobial activity, reactive oxygen species, photoactivation.
科研通智能强力驱动
Strongly Powered by AbleSci AI