已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A cross-domain hierarchical recurrent model for personalized session-based recommendations

会话(web分析) 计算机科学 循环神经网络 领域(数学分析) 登录 机器学习 人工智能 数据挖掘 人工神经网络 万维网 计算机安全 数学 数学分析
作者
Yaqing Wang,Caili Guo,Yunfei Chu,Jenq‐Neng Hwang,Chunyan Feng
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:380: 271-284 被引量:24
标识
DOI:10.1016/j.neucom.2019.11.013
摘要

Abstract Recently, much attention has been paid to personalized session-based recommendations, where detailed user information is available due to users’ automatic or active login. Nevertheless, most methods focus on a single-domain scenario, assuming that users are only active in a single domain. Consequently, they always suffer from lack of data due to ignoring the fact that users’ behaviors are scattered across domains. Therefore, we propose a novel model, called Cross-Domain Hierarchical Recurrent Model (CDHRM), to incorporate cross-domain sequential information by exploring correlations among users’ cross-domain behaviors. Specifically, we devise a cross-domain user-level recurrent neural network (RNN) to systematically depict users’ global interests by capturing the cross-domain inter-session dynamics. To separately capture intra-session dynamics of different domains, two domain-specific session-level RNNs, which can preserve behavioral differences, are constructed. Meanwhile, for achieving synchrony of interactions among domains, the user-level RNN exchanges information with different session-level RNNs in a chronological order. Moreover, fusion layers with different integration strategies are introduced to further capture behavioral differences. Finally, cross-domain user-level and session-level information are jointly exploited to predict users’ future behaviors. Empirical results show CDHRM outperforms the state-of-the-art methods on three cross-domain datasets and can work well even with non-overlapping and sparse item information across domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Tina采纳,获得10
1秒前
3秒前
5秒前
6秒前
7秒前
8秒前
10秒前
浮游应助刘旦生采纳,获得10
10秒前
11秒前
11秒前
orixero应助执念采纳,获得10
11秒前
浮游应助淡淡采纳,获得10
11秒前
俊秀的钥匙完成签到 ,获得积分10
12秒前
12秒前
12秒前
风凌发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
14秒前
14秒前
16秒前
科目三应助张不胖采纳,获得10
16秒前
木槿发布了新的文献求助10
17秒前
左安彤发布了新的文献求助10
17秒前
18秒前
17发布了新的文献求助10
19秒前
yyy发布了新的文献求助30
19秒前
浮游应助负责的方盒采纳,获得10
19秒前
20秒前
23秒前
新闻联播发布了新的文献求助10
23秒前
23秒前
24秒前
晗月完成签到,获得积分0
24秒前
执念发布了新的文献求助10
24秒前
有一种树完成签到,获得积分10
25秒前
科研通AI5应助图图采纳,获得10
25秒前
小二郎应助1204采纳,获得10
27秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018054
求助须知:如何正确求助?哪些是违规求助? 4257478
关于积分的说明 13269138
捐赠科研通 4061931
什么是DOI,文献DOI怎么找? 2221666
邀请新用户注册赠送积分活动 1230889
关于科研通互助平台的介绍 1153532