PEO based polymer-ceramic hybrid solid electrolytes: a review

材料科学 电解质 离子电导率 陶瓷 快离子导体 阳极 化学工程 储能 电导率 锂(药物) 纳米技术 复合材料 电极 化学 医学 功率(物理) 物理 物理化学 量子力学 工程类 内分泌学
作者
Jingnan Feng,Li Wang,Yijun Chen,Peiyu Wang,Hanrui Zhang,Xiangming He
出处
期刊:Nano Convergence [Springer Nature]
卷期号:8 (1) 被引量:137
标识
DOI:10.1186/s40580-020-00252-5
摘要

Abstract Compared with traditional lead-acid batteries, nickel–cadmium batteries and nickel-hydrogen batteries, lithium-ion batteries (LIBs) are much more environmentally friendly and much higher energy density. Besides, LIBs own the characteristics of no memory effect, high charging and discharging rate, long cycle life and high energy conversion rate. Therefore, LIBs have been widely considered as the most promising power source for mobile devices. Commonly used LIBs contain carbonate based liquid electrolytes. Such electrolytes own high ionic conductivity and excellent wetting ability. However, the use of highly flammable and volatile organic solvents in them may lead to problems like leakage, thermo runaway and parasitic interface reactions, which limit their application. Solid polymer electrolytes (SPEs) can solve these problems, while they also bring new challenges such as poor interfacial contact with electrodes and low ionic conductivity at room temperature. Many approaches have been tried to solve these problems. This article is divided into three parts to introduce polyethylene oxide (PEO) based polymer-ceramic hybrid solid electrolyte, which is one of the most efficient way to improve the performance of SPEs. The first part focuses on polymer-lithium salt (LiX) matrices, including their ionic conduction mechanism and impact factors for their ionic conductivity. In the second part, the influence of both active and passive ceramic fillers on SPEs are reviewed. In the third part, composite SPEs’ preparation methods, including solvent casting and thermocompression, are introduced and compared. Finally, we propose five key points on how to make composite SPEs with high ionic conductivity for reference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
谨慎巨人发布了新的文献求助10
3秒前
explorer发布了新的文献求助20
3秒前
英俊的铭应助荧惑采纳,获得10
4秒前
三个哈卡发布了新的文献求助10
5秒前
shone完成签到,获得积分10
5秒前
汪汪发布了新的文献求助10
6秒前
6秒前
phyllis完成签到,获得积分10
8秒前
麦子完成签到,获得积分20
8秒前
shone发布了新的文献求助10
8秒前
centlay应助Max采纳,获得30
9秒前
zhanglan123完成签到,获得积分10
10秒前
hugeng完成签到,获得积分10
10秒前
10秒前
FLYQRF发布了新的文献求助10
10秒前
11秒前
hwx431应助科研通管家采纳,获得40
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得80
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
LiuPP应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
秋雪瑶应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
赵ben山完成签到,获得积分10
11秒前
hugeng发布了新的文献求助10
12秒前
12秒前
13秒前
arui完成签到 ,获得积分10
13秒前
orixero应助shone采纳,获得10
14秒前
所所应助MrDJ采纳,获得10
14秒前
温暖代芙发布了新的文献求助10
15秒前
15秒前
深情安青应助鲁彦华采纳,获得10
16秒前
苹果南烟发布了新的文献求助10
17秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2385905
求助须知:如何正确求助?哪些是违规求助? 2092388
关于积分的说明 5263716
捐赠科研通 1819357
什么是DOI,文献DOI怎么找? 907412
版权声明 559181
科研通“疑难数据库(出版商)”最低求助积分说明 484740