A novel combined multi-task learning and Gaussian process regression model for the prediction of multi-timescale and multi-component of solar radiation

均方误差 克里金 回归 回归分析 高斯过程 统计 均方根 决定系数 数学 高斯分布 气象学 环境科学 地理 工程类 物理 电气工程 量子力学
作者
Yong Zhou,Yanfeng Liu,Dengjia Wang,Gejirifu De,Yong Li,Xiaojun Liu,Yingying Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:284: 124710-124710 被引量:61
标识
DOI:10.1016/j.jclepro.2020.124710
摘要

A novel combined multi-task learning and Gaussian process regression (MTGPR) model is proposed to predict the multi-time scale (daily and monthly mean daily) and multi-component (global and diffuse) solar radiation simultaneously. Compared to conventional Gaussian process regression (GPR) which can only be used for specific solar radiation component prediction on a specific timescale, the MTGPR can utilize the correlated information between different tasks to improve the model generalization and accuracy. Meteorological data from ten stations in China were used to train and validate the GPR and MTGPR models for daily global, monthly mean daily global, daily diffuse and monthly mean daily diffuse solar radiation prediction. The results showed that the GPR and MTGPR models are highly accurate in estimating daily and monthly mean daily solar radiation with coefficient of determination (R2), root mean square error (RMSE), relative root mean square error (rRMSE) and mean bias error (MBE) of GPR in ranges of 0.4623–0.9892, 0.5542–4.1591 MJm−2d−1, 4.70–39.75% and −1.1750–1.5347 MJm−2d−1, respectively. Because the MTGPR learned the intercorrelated information between different tasks, compared to GPR models, the MTGPR models performed better. For daily prediction, the average R2, RMSE and rRMSE of the MTGPR improved by 0.19–0.48%, 0.57–0.65% and 0.51–0.52%, respectively. In terms of monthly mean daily prediction, the corresponding values of MTGPR improved by 2.62–2.65%, 5.50–12.07% and 5.21–12.08%, respectively. This paper provides a compact guide for the simultaneous prediction of combined parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈鲁发布了新的文献求助10
1秒前
1秒前
光亮晓夏发布了新的文献求助10
1秒前
香蕉觅云应助kzn采纳,获得10
2秒前
qifunongsuo1213完成签到 ,获得积分10
3秒前
ming完成签到 ,获得积分10
5秒前
回复对方完成签到,获得积分10
6秒前
科研通AI2S应助CJZ采纳,获得10
10秒前
12秒前
小伊娃应助崽崽采纳,获得10
12秒前
香蕉孤风完成签到,获得积分10
13秒前
13秒前
木乙发布了新的文献求助10
16秒前
阿强完成签到,获得积分10
18秒前
Lsy完成签到,获得积分10
19秒前
乔治韦斯莱完成签到 ,获得积分10
20秒前
宫戚戚完成签到 ,获得积分10
22秒前
23秒前
JYX完成签到 ,获得积分10
24秒前
linkman应助winnie采纳,获得10
24秒前
不爱科研完成签到 ,获得积分10
27秒前
CHUNQ发布了新的文献求助10
28秒前
整齐的雨完成签到 ,获得积分10
28秒前
karstbing发布了新的文献求助30
30秒前
30秒前
小伊娃应助支吾猪采纳,获得10
30秒前
31秒前
34秒前
35秒前
36秒前
狂奔的蜗牛完成签到,获得积分10
36秒前
wang97发布了新的文献求助10
36秒前
superbanggg完成签到,获得积分10
38秒前
38秒前
ming830发布了新的文献求助10
40秒前
41秒前
41秒前
研友_48yN3L发布了新的文献求助10
42秒前
哈哈哈完成签到,获得积分10
42秒前
Life发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333820
求助须知:如何正确求助?哪些是违规求助? 3845353
关于积分的说明 12011300
捐赠科研通 3485906
什么是DOI,文献DOI怎么找? 1913458
邀请新用户注册赠送积分活动 956641
科研通“疑难数据库(出版商)”最低求助积分说明 857306