Applying Pattern Recognition as a Robust Approach for Silicone Oil Droplet Identification in Flow-Microscopy Images of Protein Formulations

硅油 可转让性 稳健性(进化) 滤波器(信号处理) 生物系统 计算机科学 材料科学 人工智能 计算机视觉 硅酮 模式识别(心理学) 生物医学工程 化学 复合材料 机器学习 工程类 生物 罗伊特 基因 生物化学
作者
X. Gregory Chen,Miglė Graužinytė,Aad van der Vaart,Björn Boll
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:110 (4): 1643-1651 被引量:9
标识
DOI:10.1016/j.xphs.2020.10.044
摘要

Discrimination between potentially immunogenic protein aggregates and harmless pharmaceutical components, like silicone oil, is critical for drug development. Flow imaging techniques allow to measure and, in principle, classify subvisible particles in protein therapeutics. However, automated approaches for silicone oil discrimination are still lacking robustness in terms of accuracy and transferability. In this work, we present an image-based filter that can reliably identify silicone oil particles in protein therapeutics across a wide range of parenteral products. A two-step classification approach is designed for automated silicone oil droplet discrimination, based on particle images generated with a flow imaging instrument. Distinct from previously published methods, our novel image-based filter is trained using silicone oil droplet images only and is, thus, independent of the type of protein samples imaged. Benchmarked against alternative approaches, the proposed filter showed best overall performance in categorizing silicone oil and non-oil particles taken from a variety of protein solutions. Excellent accuracy was observed particularly for higher resolution images. The image-based filter can successfully distinguish silicone oil particles with high accuracy in protein solutions not used for creating the filter, showcasing its high transferability and potential for wide applicability in biopharmaceutical studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
superhero完成签到,获得积分10
刚刚
刚刚
pharmac发布了新的文献求助10
2秒前
景行行止发布了新的文献求助10
3秒前
可爱的函函应助guohezu采纳,获得10
3秒前
3秒前
3秒前
纯真的澜完成签到,获得积分10
4秒前
4秒前
一条咸鱼发布了新的文献求助10
4秒前
5秒前
李倩完成签到 ,获得积分10
5秒前
5秒前
小蘑菇应助如此纠结采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
橙C冰美式发布了新的文献求助10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
上官若男应助f凡采纳,获得10
6秒前
天天应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
Orange应助xzh7119采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
wy.he应助科研通管家采纳,获得10
7秒前
小杭76应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
天天应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得10
8秒前
zcl应助科研通管家采纳,获得200
8秒前
wmf完成签到 ,获得积分10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636