亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reliability-Aware Network Service Provisioning in Mobile Edge-Cloud Networks

计算机科学 供应 备份 云计算 计算机网络 虚拟网络 可靠性(半导体) 移动边缘计算 分布式计算 服务(商务) 云朵 边缘设备 服务提供商 服务器 操作系统 功率(物理) 经济 经济 量子力学 物理
作者
Jing Li,Weifa Liang,Meitian Huang,Xiaohua Jia
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (7): 1545-1558 被引量:72
标识
DOI:10.1109/tpds.2020.2970048
摘要

The Mobile Edge-Cloud (MEC) network has emerged as a promising networking paradigm to address the conflict between increasing computing-intensive applications and resource-constrained mobile Internet-of-Thing (IoT) devices with portable size and storage. In MEC environments, Virtualized Network Functions (VNFs) are deployed for provisioning network services to users to reduce the service cost on top of dedicated hardware infrastructures. However, VNFs may suffer from failures and malfunctions while network service providers have to guarantee continuously reliable services to their consumers to meet the ever-growing service demands of users, thereby securing their revenues for the service. We focus on reliable VNF service provisioning in MECs, by placing primary and backup VNF instances to cloudlets in an MEC network to meet the service reliability requirements of users. We first formulate a novel VNF service reliability problem with the aim to maximize the revenue collected by admitting as many as user requests while meeting their different reliability requirements, assuming that requests arrive into the system one by one without the knowledge of future arrivals, and the admission or rejection decision must be made immediately. We then develop two efficient online algorithms for the problem under two different backup schemes: the on-site (local) and off-site (remote) schemes, by adopting the primal-dual updating technique. Both algorithms achieve provable competitive ratios with bounded moderate resource capacity violations. We finally evaluate the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithms are promising, compared with existing baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
仁怡完成签到,获得积分10
4秒前
bkagyin应助Moon采纳,获得10
7秒前
zhaoyuyuan发布了新的文献求助10
8秒前
犹豫水蓝发布了新的文献求助10
12秒前
慕青应助胡美玲采纳,获得10
13秒前
14秒前
26秒前
打打应助zhaoyuyuan采纳,获得10
34秒前
小黎由于求助违规,被管理员扣积分20
39秒前
39秒前
42秒前
戴璐尧发布了新的文献求助30
46秒前
犹豫水蓝完成签到,获得积分10
47秒前
科研通AI2S应助巫马百招采纳,获得10
48秒前
Lin应助null采纳,获得10
49秒前
威武灵阳完成签到,获得积分10
51秒前
傻傻的水杯完成签到,获得积分10
52秒前
54秒前
54秒前
科研通AI2S应助王小明采纳,获得10
55秒前
乐观若云发布了新的文献求助10
58秒前
58秒前
奋斗小萱关注了科研通微信公众号
59秒前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
星辰大海应助无限相互采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
null重新开启了小黎文献应助
1分钟前
1分钟前
胡美玲发布了新的文献求助10
1分钟前
zhaoyuyuan发布了新的文献求助10
1分钟前
戴璐尧完成签到,获得积分10
1分钟前
1分钟前
如沐春风发布了新的文献求助10
1分钟前
dd发布了新的文献求助30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611895
求助须知:如何正确求助?哪些是违规求助? 4696013
关于积分的说明 14890244
捐赠科研通 4727715
什么是DOI,文献DOI怎么找? 2545950
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236