A Spectrogram-Based Deep Feature Assisted Computer-Aided Diagnostic System for Parkinson’s Disease

光谱图 计算机科学 语音识别 人工智能 帕金森病 特征(语言学) 深度学习 特征提取 模式识别(心理学) 多层感知器 人工神经网络 疾病 医学 病理 语言学 哲学
作者
Laiba Zahid,Muazzam Maqsood,Mehr Yahya Durrani,Maheen Bakhtyar,Junaid Baber,Habibullah Jamal,Irfan Mehmood,Oh-Young Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 35482-35495 被引量:66
标识
DOI:10.1109/access.2020.2974008
摘要

Parkinson's disease is a neural degenerative disease. It slowly progresses from mild to severe stage, resulting in the degeneration of dopamine cells of neurons. Due to the deficiency of dopamine cells in the brain, it leads to a motor (tremor, slowness, impaired posture) and non-motor (speech, olfactory) defects in the body. Early detection of Parkinson's disease is a difficult chore as the symptoms of disease appear overtime. However, different diagnostic systems have contributed towards disease detection by considering gait, tremor and speech characteristics. Recent work has shown that speech impairments can be considered as a possible predictor for Parkinson's disease classification and remains an open research area. The speech signals show major differences and variations for Parkinson patients as compared to normal human beings. Therefore, variation in speech should be modeled using acoustic features to identify these variations. In this research, we propose three methodsthe first method employs a transfer learning-based approach using spectrograms of speech recordings, the second method evaluates deep features extracted from speech spectrograms using machine learning classifiers and the third method evaluates simple acoustic feature of recordings using machine learning classifiers. The proposed frameworks are evaluated on a Spanish dataset pc-Gita. The results show that the second framework shows promising results with deep features. The highest 99.7% accuracy on vowel \o\ and read text is observed using a multilayer perceptron. Whereas 99.1% accuracy observed on vowel \i\ deep features using random forest. The deep feature-based method performs better as compared to simple acoustic features and transfer learning approaches. The proposed methodology outperforms the existing techniques on the pc-Gita dataset for Parkinson's disease detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
蓝桉完成签到 ,获得积分10
4秒前
mayberichard完成签到,获得积分10
6秒前
没用的三轮完成签到,获得积分10
6秒前
whitepiece完成签到,获得积分10
7秒前
暮雪残梅完成签到 ,获得积分10
8秒前
nusiew完成签到,获得积分10
13秒前
CBY完成签到,获得积分20
13秒前
qiaoxi完成签到,获得积分10
15秒前
英俊水池完成签到 ,获得积分10
16秒前
舒适涵山完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
23秒前
行萱完成签到 ,获得积分10
33秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
35秒前
谨慎青亦完成签到 ,获得积分10
37秒前
梦璃完成签到 ,获得积分10
38秒前
Zoe完成签到,获得积分10
41秒前
优雅的雁凡完成签到,获得积分10
41秒前
43秒前
elsa622完成签到 ,获得积分10
46秒前
满意的念柏完成签到,获得积分10
48秒前
能干醉冬发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
51秒前
小甘看世界完成签到,获得积分10
53秒前
微笑芒果完成签到 ,获得积分10
58秒前
典雅三颜完成签到 ,获得积分10
59秒前
fomo完成签到,获得积分10
59秒前
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
nwpuwangbo完成签到,获得积分10
1分钟前
深情安青应助能干醉冬采纳,获得10
1分钟前
lwtsy完成签到,获得积分10
1分钟前
华理附院孙文博完成签到 ,获得积分10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
cctv18应助科研通管家采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883857
求助须知:如何正确求助?哪些是违规求助? 3426175
关于积分的说明 10747109
捐赠科研通 3150984
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734