Real-Time Power Consumption Monitoring and Forecasting Using Regression Techniques and Machine Learning Algorithms

支持向量机 随机森林 计算机科学 多项式回归 回归分析 线性回归 消费(社会学) 能源消耗 算法 机器学习 工程类 社会科学 电气工程 社会学
作者
Jose Mari M. Arce,Erees Queen B. Macabebe
标识
DOI:10.1109/iotais47347.2019.8980380
摘要

The demand for electricity in the Philippines has been steadily increasing with about one-third of the share going to the residential sector. Thus, there is a need to introduce energy management tools for residences to allow households to take control of their electricity consumption. This work presents a system which provides information on the power consumption of a residence through energy monitoring and forecasting. The system was deployed in a residential unit with a solar PV array and the electricity consumption was monitored for 28 days using an online cloud-server database. Moreover, different regression techniques and machine learning algorithms, such as linear and polynomial regression, support vector regression (SVR) and Random Forest, were trained and implemented to identify the model that gives the best accuracy in predicting the total electricity consumption of the residence at the end of the month. Results show that the linear and polynomial regressions produced large errors due to the nonlinear trend of the consumption data, which is attributed to the generated energy of the solar PV array. The support vector regression algorithm generated models with low percent errors in predicting the end of the month electricity consumption. Moreover, the random forest regression accurately predicted the next-day electricity consumption at 0.58 % error. However, the models generated using Random Forest are not suitable for long-term prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助gy采纳,获得10
1秒前
高贵熊猫完成签到,获得积分0
1秒前
看看发布了新的文献求助10
1秒前
2秒前
hony完成签到,获得积分10
3秒前
李健应助谈笑间采纳,获得10
3秒前
852应助sunsiyu采纳,获得30
3秒前
cara发布了新的文献求助10
3秒前
5秒前
浅色梦完成签到 ,获得积分10
5秒前
宋佳珍发布了新的文献求助10
5秒前
关键词发布了新的文献求助10
6秒前
Amyas关注了科研通微信公众号
7秒前
FashionBoy应助单于访枫采纳,获得30
8秒前
冬去春来完成签到 ,获得积分10
9秒前
duhai完成签到 ,获得积分10
9秒前
NANYU完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
传奇3应助安详的惜梦采纳,获得10
12秒前
浮游应助willenliu采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
负责月光完成签到,获得积分10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
晚风完成签到,获得积分10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
QDU应助石榴脆莆采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
huyang完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259760
求助须知:如何正确求助?哪些是违规求助? 4421264
关于积分的说明 13762582
捐赠科研通 4295161
什么是DOI,文献DOI怎么找? 2356757
邀请新用户注册赠送积分活动 1353139
关于科研通互助平台的介绍 1314315