Metabolic Cold Adaptation of Polar Fish: Fact or Artefact?

适应(眼睛) 极地的 渔业 生物 神经科学 物理 天文
作者
George F. Holeton
出处
期刊:Physiological zoology [The University of Chicago Press]
卷期号:47 (3): 137-152 被引量:184
标识
DOI:10.1086/physzool.47.3.30157851
摘要

Next article No AccessMetabolic Cold Adaptation of Polar Fish: Fact or Artefact?George F. HoletonGeorge F. Holeton Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 47, Number 3Jul., 1974 Article DOIhttps://doi.org/10.1086/physzool.47.3.30157851 Views: 267Total views on this site Citations: 148Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Lucie Gerber, Courtney E. MacSween, James F. Staples, A. Kurt Gamperl, Tzong-Yueh Chen Cold-induced metabolic depression in cunner (Tautogolabrus adspersus): A multifaceted cellular event, PLOS ONE 17, no.88 (Aug 2022): e0271086.https://doi.org/10.1371/journal.pone.0271086Carmen L. David, Rubao Ji, Caroline Bouchard, Haakon Hop, Jeffrey A. Hutchings The interactive effects of temperature and food consumption on growth of larval Arctic cod ( Boreogadus saida ), Elementa: Science of the Anthropocene 10, no.11 (Feb 2022).https://doi.org/10.1525/elementa.2021.00045Rodolfo O. Anderson, Craig R. White, David G. Chapple, Michael R. Kearney, Adam Algar A hierarchical approach to understanding physiological associations with climate, Global Ecology and Biogeography 31, no.22 (Nov 2021): 332–346.https://doi.org/10.1111/geb.13431Mikołaj Mazurkiewicz, Kirstin Meyer-Kaiser, Andrew K. Sweetman, Paul E. Renaud, Maria Włodarska–Kowalczuk Megabenthic standing stocks and organic carbon demand in a warming Arctic, Progress in Oceanography 196 (Aug 2021): 102616.https://doi.org/10.1016/j.pocean.2021.102616Andreas Kunzmann First record of stonefish metabolism: baseline respiration and spontaneous activity of tropical marine Synanceia verrucosa, Marine Biology Research 17, no.5-65-6 (Nov 2021): 475–485.https://doi.org/10.1080/17451000.2021.1979237Eric Ste-Marie, Yuuki Y. Watanabe, Jayson M. Semmens, Marianne Marcoux, Nigel E. Hussey A first look at the metabolic rate of Greenland sharks (Somniosus microcephalus) in the Canadian Arctic, Scientific Reports 10, no.11 (Nov 2020).https://doi.org/10.1038/s41598-020-76371-0Matthew J H Gilbert, Les N Harris, Brendan K Malley, Adrian Schimnowski, Jean-Sébastien Moore, Anthony P Farrell, Steven Cooke The thermal limits of cardiorespiratory performance in anadromous Arctic char (Salvelinus alpinus): a field-based investigation using a remote mobile laboratory, Conservation Physiology 8, no.11 (Apr 2020).https://doi.org/10.1093/conphys/coaa036Jingwei Song, Richard W. Brill, Jan R. McDowell Plasticity in Standard and Maximum Aerobic Metabolic Rates in Two Populations of an Estuarine Dependent Teleost, Spotted Seatrout (Cynoscion nebulosus), Biology 8, no.22 (Jun 2019): 46.https://doi.org/10.3390/biology8020046Kristina Lore Kunz, Guy Claireaux, Hans-Otto Pörtner, Rainer Knust, Felix Christopher Mark Aerobic capacities and swimming performance of polar cod ( Boreogadus saida ) under ocean acidification and warming conditions, The Journal of Experimental Biology 221, no.2121 (Sep 2018): jeb184473.https://doi.org/10.1242/jeb.184473Tina Sandersfeld, Felix C. Mark, Rainer Knust Temperature-dependent metabolism in Antarctic fish: Do habitat temperature conditions affect thermal tolerance ranges?, Polar Biology 40, no.11 (Apr 2016): 141–149.https://doi.org/10.1007/s00300-016-1934-xNicholas L. Payne, James A. Smith, Hector Arita An alternative explanation for global trends in thermal tolerance, Ecology Letters 20, no.11 (Dec 2016): 70–77.https://doi.org/10.1111/ele.12707H. E. Drost, M. Lo, E. C. Carmack, A. P. Farrell Acclimation potential of Arctic cod ( Boreogadus saida ) from the rapidly warming Arctic Ocean, The Journal of Experimental Biology 219, no.1919 (Jul 2016): 3114–3125.https://doi.org/10.1242/jeb.140194Brittany E. Davis, Nathan A. Miller, Erin E. Flynn, Anne E. Todgham Juvenile Antarctic rockcod ( Trematomus bernacchii ) are physiologically robust to CO 2 -acidified seawater, The Journal of Experimental Biology 219, no.88 (Mar 2016): 1203–1213.https://doi.org/10.1242/jeb.133173H. E. Drost, J. Fisher, F. Randall, D. Kent, E. C. Carmack, A. P. Farrell Upper thermal limits of the hearts of Arctic cod Boreogadus saida : adults compared with larvae, Journal of Fish Biology 88, no.22 (Nov 2015): 718–726.https://doi.org/10.1111/jfb.12807P. J. Rosewarne, J. M. Wilson, J. C. Svendsen Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers, Journal of Fish Biology 88, no.11 (Jan 2016): 265–283.https://doi.org/10.1111/jfb.12795G. G. Rodgers, P. Tenzing, T. D. Clark Experimental methods in aquatic respirometry: the importance of mixing devices and accounting for background respiration, Journal of Fish Biology 88, no.11 (Jan 2016): 65–80.https://doi.org/10.1111/jfb.12848James R. Lovvorn, Ute Jacob, Christopher A. North, Jason M. Kolts, Jacqueline M. Grebmeier, Lee W. Cooper, Xuehua Cui Modeling spatial patterns of limits to production of deposit-feeders and ectothermic predators in the northern Bering Sea, Estuarine, Coastal and Shelf Science 154 (Mar 2015): 19–29.https://doi.org/10.1016/j.ecss.2014.12.020Jakob Thyrring, Søren Rysgaard, Martin E. Blicher, Mikael K. Sejr Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region, Marine Biology 162, no.11 (Nov 2014): 235–243.https://doi.org/10.1007/s00227-014-2575-7Matthieu Bruneaux, Mikko Nikinmaa, Veronika N. Laine, Kai Lindström, Craig R. Primmer, Anti Vasemägi Differences in the metabolic response to temperature acclimation in nine-spined stickleback ( Pungitius pungitius ) populations from contrasting thermal environments, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 321, no.1010 (Nov 2014): 550–565.https://doi.org/10.1002/jez.1889H. E. Drost, E. C. Carmack, A. P. Farrell Upper thermal limits of cardiac function for Arctic cod Boreogadus saida , a key food web fish species in the Arctic Ocean, Journal of Fish Biology 84, no.66 (May 2014): 1781–1792.https://doi.org/10.1111/jfb.12397Sue-Ann Watson, Simon A. Morley, Amanda E. Bates, Melody S. Clark, Robert W. Day, Miles Lamare, Stephanie M. Martin, Paul C. Southgate, Koh Siang Tan, Paul A. Tyler, Lloyd S. Peck Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates, Oecologia 174, no.11 (Sep 2013): 45–54.https://doi.org/10.1007/s00442-013-2767-8 References, (Nov 2013): 207–243.https://doi.org/10.1002/9781118752777.refsTaryn S. Crispin and Craig R. White Effect of Thermal Acclimation on Organ Mass, Tissue Respiration, and Allometry in Leichhardtian River Prawns Macrobrachium tolmerum (Riek, 1951), Physiological and Biochemical Zoology 86, no.44 (Jul 2015): 470–481.https://doi.org/10.1086/671329Leonardo J. Magnoni, Norberto A. Scarlato, F. Patricio Ojeda, Otto C. Wöhler Gluconeogenic pathway does not display metabolic cold adaptation in liver of Antarctic notothenioid fish, Polar Biology 36, no.55 (Jan 2013): 661–671.https://doi.org/10.1007/s00300-013-1292-xCraig R. White, Lesley A. Alton, Peter B. Frappell Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme, Proceedings of the Royal Society B: Biological Sciences 279, no.17341734 (Dec 2011): 1740–1747.https://doi.org/10.1098/rspb.2011.2060Stéphane Thanassekos, Louis Fortier An Individual Based Model of Arctic cod (Boreogadus saida) early life in Arctic polynyas: I. Simulated growth in relation to hatch date in the Northeast Water (Greenland Sea) and the North Water (Baffin Bay), Journal of Marine Systems 93 (May 2012): 25–38.https://doi.org/10.1016/j.jmarsys.2011.08.003Hans O. Pörtner, Lloyd S. Peck, George N. Somero Mechanisms Defining Thermal Limits and Adaptation in Marine Ectotherms: An Integrative View, (Feb 2012): 379–416.https://doi.org/10.1002/9781444347241.ch13Richard E. Crawford, Svein Vagle, Eddy C. Carmack Water mass and bathymetric characteristics of polar cod habitat along the continental shelf and slope of the Beaufort and Chukchi seas, Polar Biology 35, no.22 (Jul 2011): 179–190.https://doi.org/10.1007/s00300-011-1051-9Jeffrey C. Drazen, John Yeh Respiration of four species of deep-sea demersal fishes measured in situ in the eastern North Pacific, Deep Sea Research Part I: Oceanographic Research Papers 60 (Jan 2012): 1–6.https://doi.org/10.1016/j.dsr.2011.09.007Jeffrey C. Drazen, John Yeh, Jason Friedman, Nicole Condon Metabolism and enzyme activities of hagfish from shallow and deep water of the Pacific Ocean, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 159, no.22 (Jun 2011): 182–187.https://doi.org/10.1016/j.cbpa.2011.02.018N.M. Whiteley, S.P.S. Rastrick, D.H. Lunt, J. Rock Latitudinal variations in the physiology of marine gammarid amphipods, Journal of Experimental Marine Biology and Ecology 400, no.1-21-2 (Apr 2011): 70–77.https://doi.org/10.1016/j.jembe.2011.02.027Katrin Deigweiher, Timo Hirse, Christian Bock, Magnus Lucassen, Hans O. Pörtner Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids, Journal of Comparative Physiology B 180, no.33 (Oct 2009): 347–359.https://doi.org/10.1007/s00360-009-0413-xJ. Chopelet, P.U. Blier, F. Dufresne Plasticity of growth rate and metabolism in Daphnia magna populations from different thermal habitats, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 309A, no.99 (Nov 2008): 553–562.https://doi.org/10.1002/jez.488Hans O Pörtner, Lloyd Peck, George Somero Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view, Philosophical Transactions of the Royal Society B: Biological Sciences 362, no.14881488 (May 2007): 2233–2258.https://doi.org/10.1098/rstb.2006.1947Hamish A. Campbell, Keiron P.P. Fraser, Lloyd S. Peck, Charles M. Bishop, Stuart Egginton Life in the fast lane: The free-ranging activity, heart rate and metabolism of an Antarctic fish tracked in temperate waters, Journal of Experimental Marine Biology and Ecology 349, no.11 (Sep 2007): 142–151.https://doi.org/10.1016/j.jembe.2007.05.009Douglas A. Pace and Donal T. Manahan Cost of Protein Synthesis and Energy Allocation During Development of Antarctic Sea Urchin Embryos and Larvae, The Biological Bulletin 212, no.22 (Sep 2016): 115–129.https://doi.org/10.2307/25066589Ayako OIKAWA, Nobuhito MORI, Masahito T. KIMURA Comparison of oxygen consumption in drosophilid flies from different climates, Entomological Science 9, no.44 (Dec 2006): 347–354.https://doi.org/10.1111/j.1479-8298.2006.00180.xE. Brodte, R. Knust, H. O. Pörtner Temperature-dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae), Polar Biology 30, no.11 (Jun 2006): 95–107.https://doi.org/10.1007/s00300-006-0165-yCara J. Lowe, William Davison Thermal sensitivity of scope for activity in Pagothenia borchgrevinki, a cryopelagic Antarctic nototheniid fish, Polar Biology 29, no.1111 (Apr 2006): 971–977.https://doi.org/10.1007/s00300-006-0139-0F. William H. Beamish, Phannee Sa-ardrit, Sumpun Tongnunui Habitat Characteristics of the Cyprinidae in Small Rivers in Central Thailand, Environmental Biology of Fishes 76, no.2-42-4 (May 2006): 237–253.https://doi.org/10.1007/s10641-006-9029-0J. M. CANO, A. G. NICIEZA Temperature, metabolic rate, and constraints on locomotor performance in ectotherm vertebrates, Functional Ecology 20, no.33 (Jun 2006): 464–470.https://doi.org/10.1111/j.1365-2435.2006.01129.xClive W. Evans, Leonard Pace, Paul A. Cziko, Adam G. Marsh, Chi-Hing Christina Cheng, Arthur L. DeVries Metabolic energy utilization during development of Antarctic naked dragonfish (Gymnodraco acuticeps), Polar Biology 29, no.66 (Nov 2005): 519–525.https://doi.org/10.1007/s00300-005-0083-4Hans O. Pörtner Climate-dependent evolution of Antarctic ectotherms: An integrative analysis, Deep Sea Research Part II: Topical Studies in Oceanography 53, no.8-108-10 (Apr 2006): 1071–1104.https://doi.org/10.1016/j.dsr2.2006.02.015A. CLARKE Temperature and the metabolic theory of ecology, Functional Ecology 20, no.22 (Apr 2006): 405–412.https://doi.org/10.1111/j.1365-2435.2006.01109.x Hans O. Pörtner , Albert F. Bennett , Francisco Bozinovic , Andrew Clarke , Marco A. Lardies , Magnus Lucassen , Bernd Pelster , Fritz Schiemer , and Jonathon H. Stillman Trade‐Offs in Thermal Adaptation: The Need for a Molecular to Ecological Integration Pörtner, Bennett, Bozinovic, Clarke, Lardies, Lucassen, Pelster, Schiemer, and Stillman, Physiological and Biochemical Zoology 79, no.22 (Jul 2015): 295–313.https://doi.org/10.1086/499986William Davison Antarctic Fish Skeletal Muscle and Locomotion, (Jan 2005): 317–349.https://doi.org/10.1016/S1546-5098(04)22008-8John F. Steffensen Respiratory Systems and Metabolic Rates, (Jan 2005): 203–238.https://doi.org/10.1016/S1546-5098(04)22005-2Ben Speers-Roesch, Daniel Lingwood, E. Don Stevens Effects of Temperature and Hydrostatic Pressure on Routine Oxygen Uptake of the Bloater (Coregonus hoyi), Journal of Great Lakes Research 30, no.11 (Jan 2004): 70–81.https://doi.org/10.1016/S0380-1330(04)70330-5Ian A. Johnston Muscle metabolism and growth in Antarctic fishes (suborder Notothenioidei): evolution in a cold environment, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136, no.44 (Dec 2003): 701–713.https://doi.org/10.1016/S1096-4959(03)00258-6S. L. Chown, A. Addo-Bediako, K. J. Gaston Physiological diversity: listening to the large-scale signal, Functional Ecology 17, no.44 (Aug 2003): 568–572.https://doi.org/10.1046/j.1365-2435.2003.07622.xDavid C Hardie, Paul D.N Hebert The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes, Genome 46, no.44 (Aug 2003): 683–706.https://doi.org/10.1139/g03-040 Daniela Storch and Hans O. Pörtner The Protein Synthesis Machinery Operates at the Same Expense in Eurythermal and Cold Stenothermal Pectinids D. Storch and H. O. Pörtner, Physiological and Biochemical Zoology 76, no.11 (Jul 2015): 28–40.https://doi.org/10.1086/367945Geerat J. Vermeij Temperature, tectonics, and evolution, (Jan 2003): 209–232.https://doi.org/10.1016/B978-012598655-7/50039-2J. A. Nelson Metabolism of three species of herbivorous loricariid catfishes: influence of size and diet, Journal of Fish Biology 61, no.66 (Dec 2002): 1586–1599.https://doi.org/10.1111/j.1095-8649.2002.tb02499.xJohn Fleng Steffensen Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 132, no.44 (Aug 2002): 789–795.https://doi.org/10.1016/S1095-6433(02)00048-XA. Addo-Bediako, S. L. Chown, K. J. Gaston Metabolic cold adaptation in insects: a large-scale perspective, Functional Ecology 16, no.33 (Jun 2002): 332–338.https://doi.org/10.1046/j.1365-2435.2002.00634.xLloyd S. Peck Ecophysiology of Antarctic marine ectotherms: limits to life, (Jan 2002): 221–230.https://doi.org/10.1007/978-3-642-59419-9_29A. Drud Jordan, M. Jungersen, J. F. Steffensen Oxygen consumption of East Siberian cod: no support for the metabolic cold adaptation theory, Journal of Fish Biology 59, no.44 (Oct 2001): 818–823.https://doi.org/10.1111/j.1095-8649.2001.tb00152.xAlexander B Bochdansky, William C Leggett Winberg revisited: convergence of routine metabolism in larval and juvenile fish, Canadian Journal of Fisheries and Aquatic Sciences 58, no.11 (Jan 2001): 220–230.https://doi.org/10.1139/f00-226J. -P. J. Paakkonen, T. Lyytikainen Oxygen consumption of burbot, Lota lota(L.), fed different rations of vendace, Coregonus albula L., Journal of Applied Ichthyology 16, no.66 (Dec 2000): 262–265.https://doi.org/10.1046/j.1439-0426.2000.00251.xT. Ikeda, J.J. Torres, S. Hernández-León, S.P. Geiger Metabolism, (Jan 2000): 455–532.https://doi.org/10.1016/B978-012327645-2/50011-6Lloyd S. Peck, Lucy Z. Conway The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves, Geological Society, London, Special Publications 177, no.11 (Jun 2022): 441–450.https://doi.org/10.1144/GSL.SP.2000.177.01.29Andrew Clarke, Nadine M. Johnston Scaling of metabolic rate with body mass and temperature in teleost fish, Journal of Animal Ecology 68, no.55 (Sep 1999): 893–905.https://doi.org/10.1046/j.1365-2656.1999.00337.xG.E. Shulman, R. Malcolm Love Adaptations of Fish, (Jan 1999): 7–58.https://doi.org/10.1016/S0065-2881(08)60151-0 References, (Jan 1999): 255–325.https://doi.org/10.1016/S0065-2881(08)60159-5S. J. Boyce Nitrogenous excretion in the Antarctic plunderfish, Journal of Fish Biology 54, no.11 (Jan 1999): 72–81.https://doi.org/10.1111/j.1095-8649.1999.tb00613.xI. Hardewig, P. L. M. Van Dijk, H. O. Pörtner High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 274, no.66 (Jun 1998): R1789–R1796.https://doi.org/10.1152/ajpregu.1998.274.6.R1789Christopher Zimmermann, Gerd Hubold Respiration and Activity of Arctic and Antarctic Fish with Different Modes of Life: A Multivariate Analysis of Experimental Data, (Jan 1998): 163–174.https://doi.org/10.1007/978-88-470-2157-0_14George N. Somero, Peter A. Fields, Gretchen E. Hofmann, Randi B. Weinstein, Helena Kawall Cold Adaptation and Stenothermy in Antarctic Notothenioid Fishes: What Has Been Gained and What Has Been Lost?, (Jan 1998): 97–109.https://doi.org/10.1007/978-88-470-2157-0_8 Sara J. Boyce and Andrew Clarke Effect of Body Size and Ration on Specific Dynamic Action in the Antarctic Plunderfish, Harpagifer antarcticus Nybelin 1947 S. J. Boyce & A. Clarke, Physiological Zoology 70, no.66 (Sep 2015): 679–690.https://doi.org/10.1086/515870H Hop, W M Tonn, H E Welch Bioenergetics of Arctic cod (Boreogadus saida) at low temperatures, Canadian Journal of Fisheries and Aquatic Sciences 54, no.88 (Aug 1997): 1772–1784.https://doi.org/10.1139/f97-086Phan Van Ngan, Vicente Gomes, Paulo S. M. Carvalho, Maria José de A. C. R. Passos Effect of body size, temperature and starvation on oxygen consumption of antarctic krill Euphausia superba, Revista Brasileira de Oceanografia 45, no.1-21-2 (Jan 1997): 01–10.https://doi.org/10.1590/S1413-77391997000100001Vicente Gomes, Van Ngan Phan, Maria José de Arruda Campos Rocha Passos, Estudo do metabolismo de rotina e excreção de amônia do antípoda antártico Waldeclàa obesa em duas temperaturas distintas, Boletim do Instituto Oceanográfico 43, no.22 (Jan 1995): 129–139.https://doi.org/10.1590/S0373-55241995000200005Gauthier Chapelle, Lloyd S. Peck, Andrew Clarke Effects of feeding and starvation on the metabolic rate of the necrophagous Antarctic amphipod Waldeckia obesa (Chevreux, 1905), Journal of Experimental Marine Biology and Ecology 183, no.11 (Oct 1994): 63–76.https://doi.org/10.1016/0022-0981(94)90157-0 References, (Jan 1993): 279–314.https://doi.org/10.1016/B978-0-12-228140-2.50019-3William Davison, Craig E. Franklin, Jan C. Mckenzie, Michael C.R. Dougan The effects of acute exposure to the water soluble fraction of diesel fuel oil on survival and metabolic rate of an antarctic fish (Pagothenia borchgrevinki), Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 102, no.11 (May 1992): 185–188.https://doi.org/10.1016/0742-8413(92)90061-BMARK GRAHAM, KEN WONG Captive care of and research on Arctic fish and invertebrates, International Zoo Yearbook 31, no.11 (Jan 1992): 111–115.https://doi.org/10.1111/j.1748-1090.1991.tb02373.xI. A. Johnston, A. Clarke, P. Ward Temperature and metabolic rate in sedentary fish from the Antarctic, North Sea and Indo-West Pacific Ocean, Marine Biology 109, no.22 (Jun 1991): 191–195.https://doi.org/10.1007/BF01319386S. Egginton, E. W. Taylor, R. W Wilson, I. A. Johnston, T. W. Moon Stress response in the Antarctic teleosts (Notothenia neglecta Nybelin and N. rossii Richardson), Journal of Fish Biology 38, no.22 (Feb 1991): 225–235.https://doi.org/10.1111/j.1095-8649.1991.tb03108.xG. Hubold Ecology of Notothenioid Fish in the Weddell Sea, (Jan 1991): 3–22.https://doi.org/10.1007/978-3-642-76217-8_1E. A. Hemmingsen Respiratory and Cardiovascular Adaptations in Hemoglobin-Free Fish: Resolved and Unresolved Problems, (Jan 1991): 191–203.https://doi.org/10.1007/978-3-642-76217-8_13B. D. Sidell Physiological Roles of High Lipid Content in Tissues of Antarctic Fish Species, (Jan 1991): 220–231.https://doi.org/10.1007/978-3-642-76217-8_15G. N. Somero Biochemical Mechanisms of Cold Adaptation and Stenothermality in Antarctic Fish, (Jan 1991): 232–247.https://doi.org/10.1007/978-3-642-76217-8_16A. Clarke, A. W. North Is the Growth of Polar Fish Limited by Temperature?, (Jan 1991): 54–69.https://doi.org/10.1007/978-3-642-76217-8_4Bruce A. Barton, George K. Iwama Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids, Annual Review of Fish Diseases 1 (Jan 1991): 3–26.https://doi.org/10.1016/0959-8030(91)90019-G Elizabeth L. Crockett , and Bruce D. Sidell Some Pathways of Energy Metabolism Are Cold Adapted in Antarctic Fishes, Physiological Zoology 63, no.33 (Sep 2015): 472–488.https://doi.org/10.1086/physzool.63.3.30156223 Cold adaptation in marine organisms, Philosophical Transactions of the Royal Society of London. B, Biological Sciences 326, no.12371237 (Jan 1997): 655–667.https://doi.org/10.1098/rstb.1990.0037William Davison, Craig E. Franklin, Peter W. Carey Oxygen uptake in the Antarctic teleost Pagothenia borchgrevinki. Limitations imposed by X-cell gill disease, Fish Physiology and Biochemistry 8, no.11 (Jan 1990): 69–77.https://doi.org/10.1007/BF00004433Mansour Y. Mikhail, Harold E. Welch Biology of Greenland cod,Gadus ogac, at Saqvaqjuac, northwest coast of Hudson Bay, Environmental Biology of Fishes 26, no.11 (Sep 1989): 49–62.https://doi.org/10.1007/BF00002475Lloyd S. Peck Temperature and basal metabolism in two Antarctic marine herbivores, Journal of Experimental Marine Biology and Ecology 127, no.11 (Apr 1989): 1–12.https://doi.org/10.1016/0022-0981(89)90205-0G. Hubold, A. P. Tomo Age and growth of Antarctic Silverfish Pleuragramma antarcticum Boulenger, 1902, from the southern Weddell Sea and Antarctic Peninsula, Polar Biology 9, no.44 (Mar 1989): 205–212.https://doi.org/10.1007/BF00263768J. R. Hazel Cold Adaptation in Ectotherms: Regulation of Membrane Function and Cellular Metabolism, (Jan 1989): 1–50.https://doi.org/10.1007/978-3-642-74078-7_1Edith Fanta, Pedro Hélio Lucchiari, Metry bacila The effect of environmental oxygen and carbon dioxide levels on the tissue oxygenation and the behavior of Antarctic fish, Comparative Biochemistry and Physiology Part A: Physiology 93, no.44 (Jan 1989): 819–831.https://doi.org/10.1016/0300-9629(89)90507-0Ulrich Saint-Paul, Gerd Hubold, Werner Ekau Acclimation effects on routine oxygen consumption of the Antarctic fish Pogonophryne scotti (Artedidraconidae), Polar Biology 9, no.22 (Dec 1988): 125–128.https://doi.org/10.1007/BF00442040J. J. Torres, G. N. Somero Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes, Marine Biology 98, no.22 (Jun 1988): 169–180.https://doi.org/10.1007/BF00391192P.W. Hochachka Channels and pumps—determinants of metabolic cold adaptation strategies, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 90, no.33 (Jan 1988): 515–519.https://doi.org/10.1016/0305-0491(88)90290-8J.F. Dunn Muscle metabolism in Antarctic fish, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 90, no.33 (Jan 1988): 539–545.https://doi.org/10.1016/0305-0491(88)90293-3J.A. Macdonald, J.C. Montgomery, R.M.G. Wells The physiology of McMurdo Sound fishes: current New Zealand research, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 90, no.33 (Jan 1988): 567–578.https://doi.org/10.1016/0305-0491(88)90297-0J.A. Macdonald, J.C. Montgomery, R.M.G. Wells Comparative Physiology of Antarctic Fishes, (Jan 1988): 321–388.https://doi.org/10.1016/S0065-2881(08)60076-0M. E. Forster, C. E. Franklin, H. H. Taylor, W. Davison The aerobic scope of an antarctic fish, Pagothenia borchgrevinki and its significance for metabolic cold adaptation, Polar Biology 8, no.22 (Dec 1987): 155–159.https://doi.org/10.1007/BF00297069Karl-Hermann Kock Marine consumers: Fish and squid, Environment International 13, no.11 (Jan 1987): 37–45.https://doi.org/10.1016/0160-4120(87)90042-0Rufus M.G Wells Respiration of Antarctic fish from McMurdo Sound, Comparative Biochemistry and Physiology Part A: Physiology 88, no.33 (Jan 1987): 417–424.https://doi.org/10.1016/0300-9629(87)90056-9Rufus M. G. Wells Cutaneous oxygen uptake in the antarctic icequab, Rhigophila dearborni (Pisces: Zoarcidae), Polar Biology 5, no.33 (Mar 1986): 175–179.https://doi.org/10.1007/BF00441697Alastair J. Innes, Rufus M. G. Wells Respiration and oxygen transport functions of the blood from an intertidal fish, Helcogramma medium (Tripterygiidae), Environmental Biology of Fishes 14, no.2-32-3 (Nov 1985): 213–226.https://doi.org/10.1007/BF00000829Mark S. Graham, Garth L. Fletcher, Richard L. Haedrich Blood viscosity in arctic fishes, Journal of Experimental Zoology 234, no.11 (Apr 1985): 157–160.https://doi.org/10.1002/jez.1402340118T. Ikeda Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature, Marine Biology 85, no.11 (Jan 1985): 1–11.https://doi.org/10.1007/BF00396409KARL-HERMANN KOCK Marine Habitats — Antarctic Fish, (Jan 1985): 173–192.https://doi.org/10.1016/B978-0-08-028881-9.50018-2Martin E. Feder, Allen G. Gibbs, Gerard A. Griffith, Joyce Tsuji Thermal acclimation of metabolism in salamanders: Fact or artefact?, Journal of Thermal Biology 9, no.44 (Oct 1984): 255–260.https://doi.org/10.1016/0306-4565(84)90005-6D.J. Morris, A.W. North Oxygen consumption of five species of fish from south Georgia, Journal of Experimental Marine Biology and Ecology 78, no.1-21-2 (Jun 1984): 75–86.https://doi.org/10.1016/0022-0981(84)90070-4John C. Montgomery, John A. Macdonald Performance of motor systems in Antarctic fishes, Journal of Comparative Physiology A 154, no.22 (Jan 1984): 241–248.https://doi.org/10.1007/BF00604989Hans-Jürgen Hirche Temperature and metabolism of plankton—I. Respiration of antarctic zooplankton at different temperatures with a comparison of antarctic and nordic krill, Comparative Biochemistry and Physiology Part A: Physiology 77, no.22 (Jan 1984): 361–368.https://doi.org/10.1016/0300-9629(84)90074-4G.D Parry The effect of food deprivation on seasonal changes in the metabolic rate of the limpet, Cellana tramoserica, Comparative Biochemistry and Physiology Part A: Physiology 77, no.44 (Jan 1984): 663–668.https://doi.org/10.1016/0300-9629(84)90181-6A. Clarke, D. J. Morris Towards an energy budget for krill: The physiology and biochemistry of Euphausia superba Dana, Polar Biology 2, no.22 (Jul 1983): 69–86.https://doi.org/10.1007/BF00303172J. -A. von Oertzen Seasonal respiration changes in Pomatoschistus microps and Palaemon adspersus: an experimental simulation, Marine Biology 74, no.11 (May 1983): 95–99.https://doi.org/10.1007/BF00394280 Warren W. Burggren , Martin E. Feder , and Alan W. Pinder Temperature and the Balance between Aerial and Aquatic Respiration in Larvae of Rana berlandieri and Rana catesbeiana, Physiological Zoology 56, no.22 (Sep 2015): 263–273.https://doi.org/10.1086/physzool.56.2.30156058G.D. Parry The influence of the cost of growth on ectotherm metabolism, Journal of Theoretical Biology 101, no.33 (Apr 1983): 453–477.https://doi.org/10.1016/0022-5193(83)90150-9J. J. Torres, J. J. Childress Relationship of oxygen consumption to swimming speed in Euphausia pacifica, Marine Biology 74, no.11 (Jan 1983): 79–86.https://doi.org/10.1007/BF00394278G. G. Duthie, D. F. Houlihan The effect of single step and fluctuating temperature changes on the oxygen consumption of flounders, Platichthys flesus (L.): Lack of temperature adaptation, Journal of Fish Biology 21, no.22 (Aug 1982): 215–226.https://doi.org/10.1111/j.1095-8649.1982.tb04001.xJohn A. Macdonald, John C. Montgomery Thermal limits of neuromuscular function in an antarctic fish, Journal of Comparative Physiology ? A 147, no.22 (Jan 1982): 237–250.https://doi.org/10.1007/BF00609848Scott M. O'Grady, Arthur L. DeVries Osmotic and ionic regulation in polar fishes, Journal of Experimental Marine Biology and Ecology 57, no.2-32-3 (Jan 1982): 219–228.https://doi.org/10.1016/0022-0981(82)90193-9Richard E. Lee, John G. Baust Absence of metabolic cold adaptation and compensatory acclimation in the Antarctic fly, Belgica antarctica, Journal of Insect Physiology 28, no.99 (Jan 1982): 725–729.https://doi.org/10.1016/0022-1910(82)90131-7Richard E Lee, John G Baust Respiratory metabolism of the antarctic tick, Ixodes uriae, Comparative Biochemistry and Physiology Part A: Physiology 72, no.11 (Jan 1982): 167–171.https://doi.org/10.1016/0300-9629(82)90027-5D.F Houlihan, D Allan Oxygen consumption of some antarctic and british gastropods: An evaluation of cold adaptation, Comparative Biochemistry and Physiology Part A: Physiology 73, no.33 (Jan 1982): 383–387.https://doi.org/10.1016/0300-9629(82)90171-2Arthur L. DeVries, Joseph T. Eastman Physiology and ecology of notothenioid fishes of the Ross Sea, Journal of the Royal Society of New Zealand 11, no.44 (Dec 1981): 329–340.https://doi.org/10.1080/03036758.1981.10423324P.M.C. Davies, J.W. Patterson, E.L. Bennett Metabolic coping strategies in cold tolerant reptiles, Journal of Thermal Biology 6, no.44 (Oct 1981): 321–330.https://doi.org/10.1016/0306-4565(81)90021-8F. W. H. Beamish Swimming performance and metabolic rate of three tropical fishes in relation to temperature, Hydrobiologia 83, no.22 (Sep 1981): 245–254.https://doi.org/10.1007/BF00008273Richard J Wassersug, Rashel D Paul, Martin E Feder Cardio-respiratory synchrony in anuran larvae (Xenopus laevis, pachymedusa dacnicolor, and Rana berlandieri), Comparative Biochemistry and Physiology Part A: Physiology 70, no.33 (Jan 1981): 329–334.https://doi.org/10.1016/0300-9629(81)90186-9Martin E. Feder Effect of body size, trophic state, time of day, and experimental stress on oxygen consumption of anuran larvae: An experimental assessment and evaluation of the literature, Comparative Biochemistry and Physiology Part A: Physiology 70, no.44 (Jan 1981): 497–508.https://doi.org/10.1016/0300-9629(81)92561-5 Michael A. K. Smith , and Audrey E. V. Haschemeyer Protein Metabolism and Cold Adaptation in Antarctic Fishes, Physiological Zoology 53, no.44 (Sep 2015): 373–382.https://doi.org/10.1086/physzool.53.4.30157875ANDREW CLARKE A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates, Biological Journal of the Linnean Society 14, no.11 (Jan 2008): 77–92.https://doi.org/10.1111/j.1095-8312.1980.tb00099.xG. F. Holeton Oxygen as an Environmental Factor of Fishes, (Jan 1980): 7–32.https://doi.org/10.1007/978-1-4899-3659-2_2Michael A.K. Smith, Rita W. Mathews, Alan P. Hudson, Audrey E.V. Haschemeyer Protein metabolism of tropical reef and pelagic fish, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 65, no.22 (Jan 1980): 415–418.https://doi.org/10.1016/0305-0491(80)90039-5J.J. Torres, B.W. Belman, J.J. Childress Oxygen consumption rates of midwater fishes as a function of depth of occureence, Deep Sea Research Part A. Oceanographic Research Papers 26, no.22 (Feb 1979): 185–197.https://doi.org/10.1016/0198-0149(79)90075-XA. Clarke On living in cold water: K-strategies in antarctic benthos, Marine Biology 55, no.22 (Jan 1979): 111–119.https://doi.org/10.1007/BF00397306Richard E Crawford Effect of starvation and experimental feeding on the proximate composition and caloric content of an antarctic teleost, Notothenia coriiceps neglecta, Comparative Biochemistry and Physiology Part A: Physiology 62, no.22 (Jan 1979): 321–326.https://doi.org/10.1016/0300-9629(79)90063-XJ.R. Brett, T.D.D. Groves Physiological Energetics, (Jan 1979): 279–352.https://doi.org/10.1016/S1546-5098(08)60029-1C. McGowan Selection pressure for high body temperatures: implications for dinosaurs, Paleobiology 5, no.33 (Feb 2016): 285–295.https://doi.org/10.1017/S0094837300006576R.M. Wells Respiratory adaptation and energy metabolism in Antarctic nototheniid fishes, New Zealand Journal of Zoology 5, no.44 (Jan 2012): 813–815.https://doi.org/10.1080/03014223.1978.10423825Jeffrey B. Graham, Richard H. Rosenblatt, Carl Gans VERTEBRATE AIR BREATHING AROSE IN FRESH WATERS AND NOT IN THE OCEANS, Evolution 32, no.22 (May 2017): 459–463.https://doi.org/10.1111/j.1558-5646.1978.tb00662.x Martin E. Feder Environmental Variability and Thermal Acclimation in Neotropical and Temperate Zone Salamanders, Physiological Zoology 51, no.11 (Sep 2015): 7–16.https://doi.org/10.1086/physzool.51.1.30158660R. E. Crawford Different oxygen consumption rates by the longhorn sculpin Myoxocephalus octodecimspinosus in an apparatus designed for shipboard use, Marine Biology 44, no.44 (Jan 1978): 377–381.https://doi.org/10.1007/BF00390901William Block, S.R Young Metabolic adaptations of antarctic terrestrial micro-arthropods, Comparative Biochemistry and Physiology Part A: Physiology 61, no.22 (Jan 1978): 363–368.https://doi.org/10.1016/0300-9629(78)90119-6L.Keith Miller Physiological studies of arctic animals, Comparative Biochemistry and Physiology Part A: Physiology 59, no.44 (Jan 1978): 327–334.https://doi.org/10.1016/0300-9629(78)90171-8Rita W. Mathews, Audrey E.V. Haschemeyer Temperature dependency of protein synthesis in toadfish liver in vivo, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 61, no.44 (Jan 1978): 479–484.https://doi.org/10.1016/0305-0491(78)90038-X Bernd Heinrich Why Have Some Animals Evolved to Regulate a High Body Temperature?, The American Naturalist 111, no.980980 (Oct 2015): 623–640.https://doi.org/10.1086/283196Bruce L Umminger Relation of whole blood sugar concentrations in vertebrates to standard metabolic rate, Comparative Biochemistry and Physiology Part A: Physiology 56, no.44 (Jan 1977): 457–460.https://doi.org/10.1016/0300-9629(77)90267-5Donald E. Hoss, David S. Peters RESPIRATORY ADAPTATION: FISHES, (Jan 1976): 335–346.https://doi.org/10.1016/B978-0-12-751801-5.50037-XG.N. SOMERO, P.W. HOCHACHKA Biochemical adaptations to temperature, (Jan 1976): 125–190.https://doi.org/10.1016/B978-0-408-70778-7.50006-8
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjww应助科研通管家采纳,获得30
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
可爱天川完成签到,获得积分10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
6秒前
9秒前
迟迟完成签到 ,获得积分10
11秒前
小刘马发布了新的文献求助10
14秒前
Ava应助elsazhou采纳,获得10
15秒前
sue发布了新的文献求助30
15秒前
17秒前
热切菩萨应助SCINEXUS采纳,获得10
19秒前
诚心傲之完成签到,获得积分10
20秒前
奎奎完成签到 ,获得积分10
21秒前
GTRK完成签到 ,获得积分10
21秒前
yuchao发布了新的文献求助10
22秒前
所所应助好久不见采纳,获得10
24秒前
26秒前
32秒前
wanci应助义气的碧玉采纳,获得10
33秒前
简晴完成签到 ,获得积分10
35秒前
不懈奋进应助默默纲采纳,获得30
37秒前
zhao发布了新的文献求助10
37秒前
曹雨欣完成签到,获得积分10
46秒前
zhao完成签到,获得积分10
49秒前
曾经不言发布了新的文献求助10
59秒前
研友_VZG7GZ应助坦率紫烟采纳,获得10
59秒前
peipei完成签到,获得积分10
1分钟前
maox1aoxin完成签到,获得积分0
1分钟前
SCINEXUS完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
子阅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
苏哲完成签到 ,获得积分10
1分钟前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
india-NATO Dialogue: Addressing International Security and Regional Challenges 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469908
求助须知:如何正确求助?哪些是违规求助? 2137003
关于积分的说明 5445069
捐赠科研通 1861323
什么是DOI,文献DOI怎么找? 925724
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495151