Direction of arrival estimation in multipath environments using deep learning

计算机科学 到达方向 多径传播 估计员 卷积神经网络 智能天线 人工神经网络 算法 多层感知器 计算 感知器 深度学习 天线阵 人工智能 到达角 带宽(计算) 模式识别(心理学) 实时计算 天线(收音机) 到达时间 多向性 分类器(UML) 反向传播 估计理论 激活函数 监督学习 波形 径向基函数
作者
Youssef Harkouss
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:34 (11) 被引量:9
标识
DOI:10.1002/dac.4882
摘要

Summary This article aims to present a novel direction of arrival (DOA) estimation strategy in multipath environments using deep learning. Eigen decomposition‐based algorithms, such as multiple signal classification (MUSIC), have high‐resolution DOA estimation performance, but they fail to work in the case of coherent signals. These algorithms require extensive computation and are difficult to implement in real time. Neural networks (multilayer perceptron [MLP] and radial basis function neural network [RBFNN]) are also applied to DOA estimation problem, and they are found to be faster than the conventional techniques, but they fail to ensure the desired accuracy in multipath environments when the training data set contains a huge number of samples and the number of incident signals was unknown. To enhance the DOA estimation performance, an efficient convolutional neural network (CNN)‐based smart antenna is proposed. This smart antenna is composed of a uniform linear array (ULA), an intelligent DOA estimator, and an efficient adaptive beamformer, and the space is decomposed into five space sectors. The intelligent DOA estimator contains six CNN networks. One network is used as a classifier to select one or more space sectors, and five networks are used to calculate the DOAs of unknown number of coherent or noncoherent incident signals that received in the selected space sectors. The simulation results demonstrate that the proposed DOA estimator enables reliable DOA estimation despite very challenging multipath environment, and the CNN substantially reduces the CPU time for the DOA estimation computations especially when the number of incident signals is large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助冥王星采纳,获得10
1秒前
1秒前
金金发布了新的文献求助10
1秒前
老阎应助科研通管家采纳,获得30
1秒前
无花果应助曲奇采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得20
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
老阎应助科研通管家采纳,获得30
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
lynn完成签到 ,获得积分20
2秒前
3秒前
丙烯酸树脂完成签到,获得积分10
4秒前
孙友浩发布了新的文献求助10
4秒前
4秒前
洁净艳一发布了新的文献求助10
4秒前
田様应助kyoko886采纳,获得30
5秒前
高兴的向秋完成签到,获得积分20
5秒前
重要灵竹发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
李爱国应助leomei采纳,获得10
7秒前
难过千易发布了新的文献求助10
7秒前
7秒前
威武鸽子完成签到,获得积分10
8秒前
李文浩发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088601
求助须知:如何正确求助?哪些是违规求助? 4303455
关于积分的说明 13411743
捐赠科研通 4129185
什么是DOI,文献DOI怎么找? 2261246
邀请新用户注册赠送积分活动 1265363
关于科研通互助平台的介绍 1199841