响应调节器
双组分调节系统
信号转导
组氨酸激酶
微生物学
生物
细菌
鲍曼不动杆菌
流出
致病菌
抗生素耐药性
铜绿假单胞菌
抗生素
细胞生物学
生物化学
基因
遗传学
酶
组氨酸
细菌蛋白
突变体
作者
Adrianna Raczkowska,Karolina Jaworska,Łukasz Wyrożemski,Katarzyna Brzostek
标识
DOI:10.21307/pm-2020.59.3.19
摘要
Abstract Two-component signal transduction systems composed of histidine sensor kinase and response regulator are involved in adaptive response of pathogenic bacteria to environmental signals by regulating gene expression involved in many physiological processes, bacterial virulence, and antibiotic resistance (antibacterial compounds). Antibiotic resistance of pathogenic bacteria is one of the most important public health problems worldwide. The paper describes a signal transduction mechanism based on phosphotransfer, functioning in two-component systems and the mechanisms of antibiotic resistance governed by these systems. Several signal transduction pathways associated with resistance to antibacterial compounds and functioning in Pseudomonas aeruginosa, Acinetobacter baumannii, Aeromonas, Salmonella and Yersinia spp. have been characterized (PhoP-PhoQ, PmrA-PmrB, ParR-ParS, CzcR-CzcS, CopR-CopS, PprB-PprA, CbrB-CbrA, BlrA-BlrB and OmpR-EnvZ systems). Their role in modifying the bacterial cell surface, limiting the inflow or increasing the drug efflux from the cell, producing antibiotic-degrading enzymes or the biofilm formation is presented. 1. Introduction. 2. Mechanism of action of two-component regulatory systems. 2.1. Histidine sensor kinases. 2.2. Response regulators. 2.3. Signal transduction in two-component systems. 3. Mechanisms of antibiotic resistance controlled by two-component signal transduction systems. 3.1. Cell surface modification. 3.2. Regulation of drug inflow and outflow. 3.3. Regulation of the level of enzymes modifying/inactivating antibiotics. 3.4. Other alternative forms of resistance. 4. Characteristics of two-component signal transduction systems modulating resistance to antibacterial compounds in selected Gram-negative bacteria. 4.1. PhoP-PhoQ and PmrA-PmrB systems. 4.2. ParR-ParS system. 4.3. CzcR-CzcS and CopR-CopS systems. 4.4. PprB-PprA system. 4.5. CbrB-CbrA system. 4.6. BlrA-BlrB system. 4.7. OmpR-EnvZ system. 5. Summary
科研通智能强力驱动
Strongly Powered by AbleSci AI