热电效应
化学
相(物质)
分析化学(期刊)
无量纲量
产量(工程)
硅化物
猝灭(荧光)
热电材料
衍射
半导体
热力学
结晶学
硅
冶金
材料科学
荧光
光电子学
量子力学
光学
物理
有机化学
色谱法
作者
Motoharu Imai,Soshi Ibuka,Yukihiro Isoda
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2021-07-19
卷期号:60 (15): 11394-11400
被引量:8
标识
DOI:10.1021/acs.inorgchem.1c01386
摘要
Magnesium silicide (Mg2Si) is a promising eco-friendly thermoelectric material, which has been extensively studied in recent times. However, its phase behavior at high pressures and temperatures remains unclear. To this end, in this study, in situ X-ray diffraction analysis was conducted at high pressures ranging from 0 to 11.3 GPa and high temperatures ranging from 296 to 1524 K, followed by quenching. The antifluorite-phase Mg2Si decomposed to Mg9Si5 and Mg at pressures above 3 GPa and temperatures above 970 K. The antifluorite-phase Mg2Si underwent a structural phase transition to yield a high-pressure room-temperature (HPRT) phase at pressures above 10.5 GPa and at room temperature. This HPRT phase also decomposed to Mg9Si5 and Mg when heated at ∼11 GPa. When 5Mg2Si decomposed to Mg9Si5 and Mg, the volume reduced by ∼6%. Mg9Si5 synthesized at high pressures and high temperatures was quenchable under ambient conditions. Thermoelectric property measurements of Mg9Si5 at temperatures ranging from 10 to 390 K revealed that it was a p-type semiconductor having a dimensionless thermoelectric figure of merit (ZT) of 3.4 × 10–4 at 283 K.
科研通智能强力驱动
Strongly Powered by AbleSci AI