Quantitative study of microstructural, textural and hardness evolution of high-purity Ti sheet during rolling from low to medium strains

材料科学 电子背散射衍射 晶体孪晶 打滑(空气动力学) 冶金 杂质 粒度 纹理(宇宙学) 衍射 变形(气象学) 微观结构 可塑性 复合材料 光学 化学 有机化学 人工智能 计算机科学 物理 图像(数学) 热力学
作者
Xing Hu,Linjiang Chai,Yufan Zhu,Hao Wu,Jinru Luo,Lin Tian,Qi Sun,Yuqiong Li,Jun Cheng
出处
期刊:Materials today communications [Elsevier BV]
卷期号:29: 102989-102989 被引量:18
标识
DOI:10.1016/j.mtcomm.2021.102989
摘要

Many Ti-base products are made of sheets/plates processed by rolling and strong crystallographic textures are often developed, especially for those with α-Ti as the major phase. Compared to intensive explorations of deformation behaviors of low alloyed Ti (including commercial-purity Ti) during rolling, much less has been made for high-purity Ti (HP-Ti), in spite of acknowledged important effects of some impurities on deformation modes of α-Ti. To clearly reveal microstructural, textural and hardness evolution of HP-Ti during rolling from low to medium strains, a typical HP-Ti sheet after 10–50% cold rolling was subjected to quantitative characterization by jointly using electron backscatter diffraction, electron channel contrast imaging, X-ray diffraction and hardness test. Results show that plastic deformation readily occurs through the active operation of both slip and twinning (mainly {112¯2}<112¯3¯> and {101¯2}<101¯1¯>) during 10–30% rolling. As a result of massive twinning, initial grain structures are markedly refined along with significant grain reorientation, leading to largely reduced textural intensity and the presence of new components. At higher strains (>30%), slip becomes the only deformation mode with new twins no longer appearing. In the 50%-rolled specimen, a bimodal basal texture similar to the initial one is formed along with a weak component of c//TD. The HP-Ti sheet is always hardened with increasing strains (from 120.8 ± 5.7 HV to 234.3 ± 5.8 HV). Quantitative analyses reveal that the grain refinement caused by dense twins at low strain (10% rolling) can lead to significant hardening contribution, which keeps relatively stable during subsequent rolling. Since slip can play a more important role with increasing strains, denser low angle boundaries are produced and gradually make larger contributions to hardening. As the rolling reduction increases to 50%, the contribution from low angle grain boundaries to hardness exceeds that from high angle grain boundaries (Hall-Petch hardening). The results documented in this work should not only be able to help clarify specific deformation mechanisms of HP-Ti, but also provide important implications for improving their properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
篇篇高分完成签到,获得积分10
2秒前
开放灭绝发布了新的文献求助10
3秒前
hb完成签到,获得积分10
4秒前
5秒前
虚心天亦发布了新的文献求助10
7秒前
了晨完成签到 ,获得积分10
8秒前
9秒前
10秒前
背后的小白菜完成签到,获得积分10
12秒前
王妍完成签到 ,获得积分10
12秒前
14秒前
ao完成签到,获得积分10
14秒前
开放灭绝完成签到,获得积分10
14秒前
dktrrrr完成签到,获得积分10
16秒前
lxcy0612完成签到,获得积分10
17秒前
李半斤完成签到,获得积分10
18秒前
manman完成签到 ,获得积分10
19秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
21秒前
成就觅翠应助why采纳,获得10
23秒前
小巧的白竹完成签到,获得积分10
23秒前
yhmi0809完成签到,获得积分10
25秒前
霸气鞯完成签到 ,获得积分10
26秒前
成就绮琴完成签到 ,获得积分10
27秒前
奋斗冬萱完成签到,获得积分10
30秒前
why完成签到,获得积分10
31秒前
谨慎翎完成签到 ,获得积分10
32秒前
嘟嘟许完成签到,获得积分10
32秒前
laurina完成签到 ,获得积分10
32秒前
fenghy完成签到,获得积分10
33秒前
华仔应助李半斤采纳,获得10
33秒前
思源应助乐观的非笑采纳,获得10
38秒前
可靠的巧荷完成签到,获得积分10
38秒前
Can完成签到,获得积分10
39秒前
39秒前
自信的冬日完成签到,获得积分10
39秒前
易止完成签到 ,获得积分10
40秒前
chen完成签到,获得积分10
40秒前
Cynthia完成签到,获得积分10
41秒前
潇洒的语蝶完成签到 ,获得积分10
41秒前
小竖完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4445668
求助须知:如何正确求助?哪些是违规求助? 3915787
关于积分的说明 12156309
捐赠科研通 3564864
什么是DOI,文献DOI怎么找? 1957310
邀请新用户注册赠送积分活动 996929
科研通“疑难数据库(出版商)”最低求助积分说明 892180