A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction

一般化 计算机科学 学习迁移 人工智能 深度学习 领域(数学) 序列(生物学) 极限(数学) 组分(热力学) 方位(导航) 机器学习 人工神经网络 工程类 数学分析 物理 热力学 生物 遗传学 纯数学 数学
作者
Tarek Berghout,Leïla Hayet Mouss,Toufik Bentrcia,Mohamed Benbouzid
出处
期刊:IEEE Transactions on Energy Conversion [Institute of Electrical and Electronics Engineers]
卷期号:37 (2): 1200-1210 被引量:31
标识
DOI:10.1109/tec.2021.3116423
摘要

Deep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e. bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validations are performed using the PRONOSTIA bearing degradation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_CCQ_M完成签到,获得积分10
2秒前
比大家发布了新的文献求助10
4秒前
卡卡完成签到,获得积分10
7秒前
科研通AI5应助加菲丰丰采纳,获得10
8秒前
大力的百合完成签到,获得积分10
9秒前
共享精神应助席田兰采纳,获得10
13秒前
xulin完成签到 ,获得积分10
14秒前
dochx完成签到,获得积分10
15秒前
NexusExplorer应助书记采纳,获得10
19秒前
20秒前
21秒前
充电宝应助医学小王采纳,获得10
24秒前
LZY发布了新的文献求助10
24秒前
活力寄凡发布了新的文献求助10
26秒前
万能图书馆应助宁静致远采纳,获得10
29秒前
LZY完成签到,获得积分10
29秒前
慈祥的晓蓝完成签到 ,获得积分10
31秒前
32秒前
32秒前
34秒前
kchrisuzad完成签到,获得积分10
35秒前
轻松的吐司应助活力寄凡采纳,获得10
36秒前
壹拾柒完成签到,获得积分10
37秒前
37秒前
38秒前
米香发布了新的文献求助80
39秒前
斯文败类应助meimei采纳,获得10
40秒前
科研通AI5应助比大家采纳,获得10
42秒前
宝宝时代发布了新的文献求助10
43秒前
qiulong发布了新的文献求助10
44秒前
陈甸甸完成签到 ,获得积分10
45秒前
隐形曼青应助旺旺碎采纳,获得30
46秒前
尼可深蓝完成签到 ,获得积分10
46秒前
丘比特应助苗条大叔采纳,获得10
47秒前
47秒前
49秒前
细雨听风完成签到,获得积分10
49秒前
laochen完成签到 ,获得积分20
50秒前
haha_peng完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878